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Abstract. We present theIncremental Focus of Attention(IFA) architecture for robust, adaptive, real-time motion
tracking. IFA systems combine several visual search and vision-based tracking algorithms into a layered hierarchy.
The architecture controls the transitions between layers and executes algorithms appropriate to the visual environ-
ment at hand: When conditions are good, tracking is accurate and precise; as conditions deteriorate, more robust,
yet less accurate algorithms take over; when tracking is lost altogether, layers cooperate to perform a rapid search
for the target and continue tracking.

Implemented IFA systems are extremely robust to most common types of temporary visual disturbances. They
resist minor visual perturbances and recover quickly after full occlusions, illumination changes, major distractions,
and target disappearances. Analysis of the algorithm’s recovery times are supported by simulation results and
experiments on real data. In particular, examples show that recovery times after lost tracking depend primarily on
the number of objects visually similar to the target in the field of view.
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1. Introduction

Biological visual systems exhibit an amazing robust-
ness to complex visual events. The human visual sys-
tem, for example, is able to adapt to or recover from
many unexpected visual circumstances. On one hand,
it can acquire partial information about an object if it
is at all visible; on the other hand, it can reacquire an
object that is temporarily lost from view. Thus, ath-
letes can still catch, hit, or kick a ball by knowing its
approximate position even when it is spinning rapidly,
and motorists can quickly recover track of the vehicle
ahead of them, even after a glance in the mirrors.

As we move vision systems from the structured lab-
oratory to the “real world,” we must endow them with
this ability to cope with unexpected or unmodeled situ-
ations. Robotic hand-eye systems must be able to track

grasped objects even if they are dropped, vision-based
human-computer interfaces should not be bothered by a
sneezing subject, and automated driving vehicles must
remain aware of the road even if it becomes momen-
tarily obscured by snow or dirt. In biological systems,
this kind of robustness is taken for granted, yet in com-
puter vision it is an issue that has received relatively
little attention.

Incremental Focus of Attention(henceforth, IFA) be-
gins to fill this gap by providing a design methodology
for developing robust motion tracking systems. Con-
ceptually, IFA is a framework for organizing multiple
tracking algorithms and search heuristics into robust
systems. During execution, IFA efficiently focuses the
“attention” of the tracking system onto relevant parts
of the image. The result is robustness in two senses.
First, if an IFA system is composed of several trackers
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of varying accuracy, failure of any specific tracking
algorithm usually means that another, less precise al-
gorithm takes over. Second, when visual perturbations
temporarily cause a tracking system to lose its target,
IFA provides the possibility of reinitialization and re-
covery. In this way, IFA tracking systems gracefully
degrade as visual conditions deteriorate and recover
when conditions improve.

This article describes the development of the IFA
architecture for efficient and robust vision-based track-
ing. In the next section, we formulate the tracking prob-
lem in more precise terms and develop necessary ter-
minology. In Section 3, we give an overview of related
work. Section 4 describes the construction of IFA sys-
tems. Their correctness and robustness properties are
discussed in Section 5. Finally, Section 6 discusses the
implementation of several IFA tracking systems and
offers experimental results which justify IFA’s claims
to robustness.

2. The Robust Tracking Problem

In vision-based object tracking, the goal is to deter-
mine specific measurable attributes of atarget given
a sequence of temporally ordered images. Tracking
problems can be as simple as determining the vertical
position in image coordinates of a bouncing ball or as
complex as computing the instantaneous 3D kinematic
configuration of a walking person. Throughout this ar-
ticle, we assume that the value of these quantities at
a given time pointt is given by ad-dimensionalstate
vector,x(t) ∈ X ⊂ <d. We further assume thatX , the
state spaceof the system, is bounded and therefore of
finite volume. Then, thevision-based tracking problem
is defined to be the calculation of a series of estimates
x̂(t) of the actual state,x∗(t), of the target at timet . For
the remainder of the article, we assume the dependence
of x∗ andx̂ on t without explicitly noting it.

We view vision-based tracking as a repeated search
and estimation process, where the search occursin the
state space of the target, not in the image. The input
to a tracking algorithm is aninput configuration set,
or a set of candidate target states,X in ⊆ X , together
with an image,I . The output at each time step consists
of an output configuration set, Xout ⊂ X , such that
Xout ⊂ X in, whereXout should includêx. The output
set, Xout, of an algorithm is also a representation of
the algorithm’smargin of error. Thus, we have chosen
the margin of error to be a set of states rather than, for
example, a statistical distribution over states. Note that

for actual implementation, neither input sets nor output
sets are necessarily explicit. An algorithm may return
a single state, for example, but such output together
with the known margin of error can be interpreted as a
set of states.

By introducing an explicit margin of error, we can
precisely define several relevant terms. We say that
tracking isaccurateif and only if x∗ ∈ Xout. Mis-
tracking, or tracking failure occurs whenx∗ is not an
element ofXout. Precisionis related to a measure of
the size of the error margin, denoted|Xout|. The sim-
plest formulation of precision is that it relates inversely
with the volume of states occupied by the error mar-
gin. Under this formulation, algorithms which return
large margins of error are less precise than algorithms
with smaller margins of error. In addition, the dimen-
sionality of the state information computed by an al-
gorithm affects its precision. For example, a tracking
algorithm which can determine the positionandorien-
tation of a face is more precise than an algorithm which
determines only the position: the former has a smaller
output set than the latter, which includes sets ranging
over all possible orientations.

As noted above, we concentrate on the problem of
robustness. Robustness is the ability of a vision-based
tracking system to track accurately and precisely during
or after visual circumstances that are less than ideal.

3. Previous Work in Robust Tracking

The existing literature on robust tracking can be broadly
categorized into research that contributes to eitherante-
failure or post-failurerobustness (Toyama and Hager,
1998). Ante-failure robust systems seek to avoid track-
ing failure altogether through specialized algorithms
that anticipate visual disturbances and attempt to track
despite them. Post-failure systems, on the other hand,
accept the inevitability of mistracking and are designed
to recover from failure once it happens. It seems clear
that both ante-failure and post-failure means are nec-
essary for reliable tracking, but research thus far has
been heavily weighted towards the former.

Advances in ante-failure robustness are usually
achieved through robust statistics, temporal filtering,
or ad hocmethods for handling specific types of visual
perturbations.

For instance, distractions—objects which are close
to the target both in appearance and state—can be han-
dled in several ways. One method is to consider only
a small set of states surrounding the target (Hager and
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Toyama, 1998; Vincze, 1996). This requires some pre-
dictability in the target trajectory but eliminates the
need to examine the entire image. Another way to han-
dle distraction is through foveation, effectively blurring
the image region around the target (Burt and van der
Wal, 1990; Terzopoulos and Rabie, 1995). Finally, a
tracking system may filter output estimates based on
expected motion and noise (Blake et al., 1993). Some
of this work is based on a well-established literature
in target tracking which handles similar problems by
taking advantage of known dynamics and noise models
(Bar-Shalom and Fortmann; 1988; Bar-Shalom and Li,
1993; Reid, 1979). All of these techniques avoid dis-
traction by ignoring or filtering out competing object
states which are unlikely to be the target.

Other visual disturbances have other solutions.
Changes in ambient lighting have been handled by con-
centrating on color cues (Rasmussen et al., 1996; Wren
et al., 1995), by tracking based on edges (Gennery,
1992; Kass et al., 1987; Lowe, 1992), or by explic-
itly modeling illumination parameters (Hager and Bel-
humeur, 1998). Fast or unpredictable motion requires
combinations of faster hardware, full-frame processing
(Burt, 1988; Nishihara, 1996), or probabilistic dynam-
ics (Isard and Blake, 1998). Occlusions, where opaque
objects intercept the camera’s line of sight to the tar-
get, can be handled by robust matching (Gennery, 1992;
Hager and Belhumeur, 1998; Lowe, 1992; Kosaka and
Nakazawa, 1995) or by dynamic state prediction (Blake
et al., 1993; Burridge et al., 1995; Terzopoulos and Ra-
bie, 1995).

Ante-failure work generally seeks to handle prob-
lems one at a time, but some researchers have sought
to design systems that are ante-failure robust to many
types of visual perturbations simultaneously. Notable
among these are probabilistic methods, which sam-
ple and interpolate likelihoods over the state space
(Isard and Blake, 1996), and sensor fusion techniques,
which track based on multiple cues (Crowley and
Berard, 1997; Kahn et al., 1996; Oliver et al., 1997;
Prokopowicz et al., 1994).

None of these efforts are error-free. As in other do-
mains, ante-failure methods cannot eliminate failure
entirely. Most often, the limitations are a reflection
not of poor algorithmic design, but rather of the im-
possibility of perfect vision-based tracking in complex
circumstances.

To deal with such situations, some researchers have
incorporated post-failure schemes to recover track-
ing when mistracking occurs. Typically, post-failure

techniques execute different algorithms depending on
tracking success. Much of this work is inspired byfo-
cus of attentionin biological systems. Cognitive sci-
ence research in focus of attention suggests that bio-
logical vision systems are broadly organized intopre-
attentiveandpost-attentivestages: The pre-attentive
stage rapidly finds image subregions of interest on
which to focus the attention of a post-attentive stage,
which examines the attended region more closely
(Neisser, 1967; Treisman, 1985; Tsotsos, 1993; Wolfe,
1995).

Many resesarchers have incorporated knowledge
gained from cognitive science and built tracking sys-
tems that manage two separate algorithms, where the
first algorithm rapidly finds relevant candidate regions
in an image and the second performs tracking (e.g.,
(Isard and Blake, 1998)). Most of this work focuses on
a single means to find and track a target, using var-
ious cues: intensity (Pahlavan and Eklundh, 1992),
color (Rasmussen et al., 1996), or motion (Huber and
Kortenkamp, 1995; Murray and Basu, 1994). These
methods are efficient, but do not take advantage of the
multiple cues which identify real-world objects.

Some recent work extends this notion to using more
than two stages or multiple cues for tracking. In face
tracking, for example, some systems are able to ro-
bustly determine such things as the facial expression
of the target in real-time (Crowley and Berard, 1997;
Oliver et al., 1997). Another system is able to detect
and track a limited set of vehicles using a three-stage
focus of attention scheme (Concepcion and Wechsler,
1996). Others, focusing on the information contained
in multiple cues focus on fusing different types of im-
age information to identify a unique target (Maki et al.,
1996; Uhlin et al., 1995).

IFA differs from prior work in several ways. First,
rather than trying to build computational models of bi-
ological visual systems (Culhane and Tsotsos, 1992;
Tsotsos, 1995), we are primarily concerned with syn-
thesizing methods for vision-based tracking which are
computationally efficient and robust. Second, IFA is
not restricted to computing positional or directional
information about a target, as are many active tracking
systems which emphasize the control aspects of keep-
ing an object in view (Bradshaw et al., 1994; Coombs
and Brown, 1993; Nordlund and Uhlin, 1996; Pahlavan
and Eklundh, 1992; Uhlin et al., 1995). Rather, IFA
search may recover even affine 2D or fully articulated
3D pose information. Third, we pose tracking itself
as a flexible multi-stage focus of attention rather than
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remaining within the standard two-stage paradigm
(Maki et al., 1996; Nordlund and Uhlin, 1996) or even
a fixedk-stage architecture (Concepcion and Wechsler,
1996; Crowley and Berard, 1997; Oliver et al., 1997).
Lastly, our framework is not restricted to particular tar-
gets or specific cue types. Techniques such as eye-blink
detection (Crowley and Berard, 1997) or mouth local-
ization (Oliver et al., 1997) are specifically designed for
frontal views of faces only and do not generalize for
other target types. IFA, in contrast, allows utilization
of a variety of algorithms and thus confers robustness
to many different target types.

Finally, we note that recent work in control of robotic
systems lays a possible theoretical foundation for IFA.
“Dynamical pick and place” tasks, in contrast to static
pick and place tasks, require a robot to control the dy-
namics of an object in addition to controlling its posi-
tion (Burridge et al., 1995). An example is the problem
of using a flat, gripper-less, 3-DOF arm to catch a ball
thrown into the robot’s workspace, where “catching”
means bringing the ball to eventual standstill on the
bat. Bysequential compositionof locally convergent
controllers, one for each subregion in the state space
of the ball, the ball can be caught from almost any ini-
tial state (Burridge et al., 1995, 1998): When the ball is
falling at high speeds, the controller switches to bounc-
ing control to slow the ball down. At lower speeds, the
controller may switch to “palming” behavior, where
the bat is able to maintain contact with the ball contin-
uously without bouncing. Ultimately, the ball is caught
and held still. A kind of sequential composition occurs
in IFA, where different tracking algorithms take control
depending on the dynamics of the target.

There are two reasons, however, why sequential
composition is not adequate for the tracking problem.
First, in tracking, the state of the tracked object is also
the quantity to be determined, whereas in robot control,
sensing is taken for granted and the result of computa-
tion is a command to take action. A circularity arises
here—the very state that needs to be computed is what
determines the method of computation. Secondly, as
explained above, tracking can fail. The state of the tar-
get can at times be unknown, requiring a system that
recognizes such situations and takes steps to recover
from them.

4. System Construction

The design of an IFA system begins with an inventory
of the tracking algorithms that are available for track-

ing a particular target. Algorithms are broadly clas-
sified as attention-focusing mechanisms (selectors) or
as tracking mechanisms (trackers). The former can
be thought of as heuristics which select regions of the
state space to search while the latter track the target
once it is found. These algorithms, calledlayersin the
framework, are ordered by decreasing precision, with
more precise algorithms at the top. At any given mo-
ment, processing occurs in a single layer. Successful
tracking at a layer pushes control upward while unsuc-
cessful tracking pulls control downward. Because one
layer’s output set is used as the next layer’s input set,
ascending layers gradually increase the precision of the
system’s state estimate. Finally, the system operates in
either of two modes, indicating its awareness of track-
ing success. Duringsearch mode, the system has no
definite state information about the target but actively
searches the state space to find it. Duringtrackmode,
the system asserts that it is tracking the target and can
estimate part or all of the desired state information.

4.1. Layer Elements

The raw materials for IFA layers are tracking algo-
rithms and visual search heuristics. In general, the
more algorithms are available for finding and tracking
a target, the better the final system, so it is advanta-
geous to explore and exploit every visual uniqueness
of the target.

Given a set of visual searching and tracking algo-
rithms, they must first be classified as either potential
trackers or potential selectors. This distinction ideal-
izes the algorithms, simplifying design and analysis.
Section 5 will discuss the practical implications when
these assumptions are not satisfied.

Trackers are algorithms which always generate an
output set that contains the target state if given an input
set which contains the target. If a tracking algorithm
often tracks non-target objects, it may be more suitable
as a selector. Conversely, if an attentional heuristic is
based on a cue that is known to be unique within its
input sets, it may be better suited as a tracker. An
attention algorithm focusing on flesh-colored “blobs”
could be a successful tracking algorithm if guaranteed
that its input will only contain one flesh-colored object.
The sensitivity of the surrounding task to mistracking
and accuracy will also come into consideration.

In the following, let X̄ denote the set of all state
subsets ofX and letI denote the set of all images. We
model trackers and selectors as functions from state
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sets and images to state sets. For a given functionf ,
Dom( f ) ⊆ X̄ and Rng( f ) ⊆ X̄ denote the state set
part of the domain of input state sets and range of output
state sets off , respectively. In all cases, we assume
that Dom( f ) coversX .

4.1.1. Trackers. Formally, a tracker should fit the fol-
lowing definition as closely as possible (in the sections
to follow, we discuss the effect of non-ideal trackers):

Definition 1. An idealized tracker is a function,
f : X̄ × I 7→ X̄ , such that for allX ∈ Dom( f ) and
I ∈ I,

1. f (X, I ) ⊂ X.
2. If x∗ ∈ X, then eitherx∗ ∈ f (X, I ) or f (X, I ) = ∅.
3. If x∗ 6∈ X, then f (X, I ) = ∅.

Together, Properties 2 and 3, which we refer to as thefil-
ter criterion, are a formalization of partial correctness.
They state that trackers may return occasional false
negatives, where a target which is present goes unde-
tected, but never produces false positives, where a non-
target is hallucinated although none exists. Thus, track-
ers must monitor their performance and report tracking
failure. Usually, geometric constraints or thresholds
can be set so that a tracker will report failure when
appropriate. A tracker based on a wire-frame object
model, for example, might report failure when a certain
percentage of its model edges lack correspondences in
the image. Although precise self-assessment is opti-
mal, for the correctness of the algorithm, it is better for
trackers to err on the side of conservativeness in their
own estimation of success.

4.1.2. Selectors. Selectors are attention-focusing al-
gorithms which are heuristic in nature and hence prone
to returning sets not containing the target state:

Definition 2. An idealized selectoris a randomized
function, g : X̄ × I 7→ X̄ , such that for allX ∈
Dom( f ) and I ∈ I,

1. g(X, I ) ⊂ X.
2. If x ∈ X, there is some finite probabilityεg > 0 that

x ∈ g(X, I ).

The purpose of selectors is to output manageable
state sets for higher layers with a possible bias toward

certain geometric or image-based constraints. For in-
stance, a selector for face tracking will preferbut not
insist onreturning output sets which include states con-
sistent with detected motion or flesh color. Thus, se-
lectors return different output sets over time such that
different portions of the state space are passed up the
hierarchy with each call.

Finally, associated with each selector,gi , are anit-
eration index, σi , and an iteration threshold,σMAX

i .
The iteration index counts the number of times a se-
lector is executed and elicits selectorfailure when it
surpasses the iteration threshold (Section 4.4 describes
when indices are incremented or reset). Monitoring of
the iteration index prevents repeated, unsuccessful at-
tempts to find the target in a region of the state space not
containing the target. ActualσMAX

i values will depend
on the reliability of the attention heuristic.

4.1.3. Set Dilation. One last adjustment is made to
trackers. Since targets are moving even as computa-
tion in layers takes place, the state sets output by layers
must be adjusted in order to accommodate target move-
ment. The union of potential adjusted output sets must
be guaranteed to include the target state if the input set
included it. In practice, this seemingly strict require-
ment is satisfied byset dilation, in which the input sets
to a tracker are simply expanded to include neighboring
states as well. For the remainder of this article,Xout′,
will be taken to mean the output set after set dilation.

4.2. Layer Composition

In order to construct the system, all layers are sorted
by output precision. Because greater precision often
requires more processing, this means that faster algo-
rithms will tend to occur at the bottom layers. Algo-
rithms which are superseded by others in both speed
and precision should be discarded.

Next, additional selectors are inserted wherever one
layer’s output is not precise enough to satisfy the input
constraints of the layer above it. These selectors may be
specially designed for the system and the environment,
or they may be brute-force search algorithms which
systematically partition a state space into subsets of
the appropriate size. If the bottommost layer does not
take the full configuration set as its input, a selector
is added at the bottom. Any selectors that are more
precise than the most precise tracker are discarded or
converted into trackers.

Layers are then labeled from 0 ton−1 such that the
topmost layer isn− 1, and the bottommost is 0.
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Figure 1. A five-layer Incremental Focus of Attention (IFA) system. On the left, a schematic representation of five algorithmic layers. On
the right, the corresponding finite state transition graph for an example with three trackers and two selectors. Subscripts indicate corresponding
layer number; superscripts indicate whether the state is insearch or track mode. Outbound edges at the top left of a state are taken when a
layer is successful; outbound edges at the bottom right are taken when a layer fails.

4.3. State Transition Graph

At the heart of an IFA system lies a deterministic finite
state automaton (Fig. 1(right)), in which transitions oc-
cur based on the success of layers. This automaton is
constructed as follows:

• For each layerk (0≤ k < n), we create a nodeNs
k .

• Let m be the index of any selector that occurs im-
mediately above a tracker. We create nodesN t

j , for
each layerj (m+ 1 ≤ j < n). In Fig. 1, n = 5,
m = 2, layers 0 and 2 are selectors, layers 1, 3, and
4 are trackers,search nodes are on the left, and
track nodes are on the right. The superscripts in-
dicate the obvious correspondence of states with the
two modes.
• For eachk, 0 < k < n, we create asuccess link(a

directed edge) from nodeNs
k−1 to Ns

k and afailure
link from nodeNs

k to nodeNs
l , wherel is the first layer

below layerk that is a selector. One more failure link
is created from nodeNs

0 to itself.
• FromNs

n−1, thesearchnode for the topmost tracker,
we add a success link toN t

n−1.
• For eachj , m < j < n, we add a failure link from

nodeN t
j to N t

j−1; and similarly, we add a success
link from nodeN t

j−1 to N t
j . One more success link

is created from nodeN t
n−1 to itself.

• Finally, we add a failure link from nodeN t
m+1 to Ns

m.

Since each state represents a unique combination
of tracking layer and operating mode (i.e.,search or
track), the internal knowledge of the system in terms
of tracking mode and precision is represented in its
entirety by the current state of the automaton.

4.4. Algorithm

In describing the IFA algorithm (Fig. 2), we use the
following variables:N represents the current node in
the state transition graph,i = L(N) represents the
layer associated withN, l i represents the algorithm at
layer i , andX in

i andXout
i denote the input and output

sets of layeri . The functionsS(N) and F(N) return
the destination nodes of transition edges out of nodeN
for success and failure, respectively.

Once initialized, the algorithm spends its time in
the main loop, repeatedly executing the currently ac-
tive layer and evaluating the results. Layers cause a
straightforward transition based on their success, mov-
ing control up a layer when successful and down to the
next tracker or selector, if unsuccessful.

Some additional bookkeeping happens for these
transitions, both to keep iteration indices updated and
to send the proper state sets to the next executing layer.
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Figure 2. The IFA algorithm.

A selector’s iteration index is incremented each time its
corresponding node is visited and reset to 0 either when
the selector fails or when top layer tracking is achieved.
Output state sets at a particular layer are only used as
input sets of the next processing layer when the layer
in question is successful. If a layer is unsuccessful,
then the selector to which control falls uses the same
input set as it did the previous time it was called. In
Fig. 2, Steps 1 and 2 are concerned with tracker and se-
lector failure, respectively, and Step 3 handles success
for both trackers and selectors.

The construction of the layers according to Sec-
tions 4.1 through 4.3 together with the algorithm de-
scribed above assures that the following properties hold
(straightforward proofs are given in (Toyama, 1998)):

Property 1. (correctness) The return ofXout 6= ∅ by
Node Nt

n−1 implies thatx∗ ∈ Xout.

Property 2. (robustness)Assume that a system is be-
gun at some node, Ns

k (0 ≤ k < n − 1, where n is
the number of layers), and thatx∗ ∈ X in. Then, un-
der ideal visual conditions, P(N = N t

n−1) → 1 as
t →∞.

A special case of Property 2 affirms that when the sys-
tem starts at the bottom layer, high precision tracking
will eventually take place.

5. Non-Ideal IFA Systems

In reality, the assumptions made in the previous sec-
tion do not hold perfectly. Since we are making claims

about the robustness of systems, it is vital to our anal-
ysis to examine the effects of violated assumptions.
We show that even though system performance dete-
riorates with weakened assumptions, the system as a
whole nevertheless retains robustness and partial cor-
rectness.

5.1. IFA in Practice

5.1.1. Permanent Visual Disturbances.Any visual
event that causes a tracker to fail will prevent recovery
from any layer below that tracker, so a permanent per-
turbation will prevent recovery forever. On the other
hand, the intent is to recover quickly, so ideal conditions
should not need to remain for very long. In Section 5.2,
we will consider the issue of expected recovery times.

5.1.2. Imperfect Trackers. Real trackers may return
false positives. This can happen even with excellent
visual criteria for judging whether an image contains
the target object, because it is always possible that there
are multipledistractorobjects visually identical to the
target.

Distractors can exist for any single tracker. Thus,
a tracker which uses only color to determine its target
will be distracted by objects with the same color as the
target. Distractors may violate Definition 1(Item 2) be-
cause the output set of a tracker may contain the state of
a distractor only, even if the input set contains the actual
target. Distractors can also violate Definition 1(Item 3)
of trackers, since they will cause a tracker to output a
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non-empty set, even when only a distractor, and not the
actual target state, is in their input state set. Therefore,
the correctness and robustness properties in Section 4.4
depend on the fact that at the very least, the top layer
tracker does not admit distractors.

Distractors can cause one other form of tracking er-
ror, which we call errors due tosleight of hand. Sleight
of hand occurs when the system is in one of the non-
top-layer track nodes (N t

i , wherei 6= n − 1), and an
object that is a distractor for that layer occludes and
then moves away from the target object. An example
of this occurs when the system is tracking a target’s par-
tial state based solely on color, and another object of
similar color passes in front of the target. It is possible
in this instance that the system will begin tracking the
second object instead of the target, without recognizing
its error. This situation can be completely avoided by
excluding all but the top layer fromtrack mode. The
cost of choosing this conservative option, however, is
to lose the possibility of tracking at lower precisions
under perturbed conditions, i.e., to lose the quality of
graceful degradation.

5.2. Recovery Times

The key issue of IFA systems in practice is a quantita-
tive one: How long is the recovery time after a failure
event?

It will be useful to consider a compact representa-
tion of an IFA system, in which selectors are always
followed by trackers and trackers (except the top layer
tracker) are followed by selectors. Formally this is
not a problem since the composition of any number of
trackers is a tracker and the composition of any number
of selectors is a selector. Label the 2m new layersg0,
f0, g1, f1, . . . , gm−1, fm−1, whereg0 represents the
bottommost selector andfm−1 is the topmost tracker.

In the following sections, we will letκi represent the
number of times that selectorgi will be called before its
output set contains the target (andE[κi ] the expected
number of calls). LetTi be the total time to execute both
selectorgi and trackerfi . We will additionally make
some independence assumptions which will make the
analyses tractable:

1. State-image pairs are static between visits to the
bottom layer.

2. Each time the bottom-layer is visited, the state com-
ponent of the input is generated statistically inde-
pendently from previous visits.

3. The operation and associated probabilities of each
layer is independent of the operation of layers pre-
ceding it.

These assumptions are intended to be consistent with
intuitive notions of object motion, particularly for those
targets which require post-failure robustness: While
most objects exhibit apparent continuity over small
time scales, they are more likely to appear to move
randomly when sampled over larger time scales.

5.2.1. Ideal IFA. Under ideal conditions, the filter
criterion for trackerfi ensures thatgi+1’s input set al-
ways includes the target state. Thus, we can setσMAX

gi+1

to∞ and still expect recovery.
The expected value of the sum of random variables

is simply the sum of their expected values, so the total
expected time to complete recovery from selector layer
i , is given by

E
[
Tm−1

i

] = m−1∑
j=1

E[κ j ]Tj , (1)

whereTm−1
i represents the total time to recover from

Layer i to Layerm− 1. In this case, better selector
heuristics at any Layeri will decreaseE[κi ] and con-
tribute directly to shorter expected recovery times. We
note that the impact of the improvement at any layer
is roughly equal to improvement of any other layer,
because most branches in the implicit search tree are
immediate dead ends (see Fig. 3(a)).

5.2.2. IFA in Practice. The existence of false posi-
tives for trackers complicates the recovery time analy-
sis. With false positives, iteration thresholds must be
finite (except at the bottom layer), in order to ensure
exit from upper layers that are given input sets not con-
taining the target.

To make the analysis concrete, we make the follow-
ing modeling decisions: (1) there is a fixed probability,
pfi , of a false positive at Layerfi for each potential
branch of the search at Layergi ; (2) a false positive at
one layer does not affect the probability of false posi-
tives at higher layers; (3) there are fixed probabilities,
ρi j < (1− pfi ), which represent the probability that a
given selector,gi , receives the target state in its input
state, it will return an output set containing the target
on the j th iteration.

We now consider the time required to fall out of a
layer, should that layer be called with an input set not
containing the target. We merely add up the number of
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Figure 3. Schematics for the IFA search process. Solid lines represent branches or subtrees which actually were explored until target state
localization. Dotted lines represent branches or subtrees which were not explored before state determination. Triangles represent entire subtrees.
(a) IFA systems with trackers which fulfill the filter criterion prune all but one subtree at each depth; (b) Systems whose trackers do not fulfill
the filter criterion may have to search every subtree to maximum depth.

visits to each layer (multiplied by the respective times
it takes to do so), given that all iteration thresholds must
be reached before the algorithm reverts to layeri − 1
below. Below,Mi represents the time it takes to revert
to Layeri−1, starting at Layeri , when Layeri receives
a set without the target:

E[Mi ] = σMAX
i Ti + pfi σ

MAX
i E[Mi+1] (2)

Note that only false positives generated at higher layers
cause additional search deeper in the subtree. Setting
the base case,E[Mm−1], of this recurrence toTm−1, we
arrive at the explicit form,

E[Mi ] =
m−1∑
j=i

(
j−1∏
k=i

p fkσ
MAX
k

)
σMAX

j Tj . (3)

Next, we computeHm−1
i the time required to find a

target from Layeri , if the system does in fact find the
target. First, we computeE[κ ′i ], the expected number of
times Layeri itself is called, by normalizing the prob-
abilities ofκi for values less than or equal toσMAX

i and
then computing their expected values. We then sum the
expected time it takes to execute Layeri , the expected
time spent exploring false positives, and the expected
time spent ascending the remaining layers:

E
[
Hm−1

i

]
= Ti E[κ ′i ] + pfi (E[κ ′i ] − 1)E[Mi+1] + E

[
Hm−1

i+1

]
=

m−1∑
j=i

Tj E[κ ′j ] + pf j (E[κ ′j ] − 1)E[M j+1], (4)

whereM j+1 is as in Eq. (3) andE[Hm−1
m−1 ] = Tm−1. For

purposes of recovery after failure, we are interested
primarily in the case wheni = 0.

Letting E[κall] be the expected number of times the
bottom layer will be called before the algorithm con-
verges to the top layer, we can expect the total recovery
time to be

E
[
Tm−1

0

] = E[κall]E[M0] + E
[
Hm−1

0

]
. (5)

The value ofE[κall] can be estimated as follows. The
probability that selector-tracker pairi will succeed,
given it receives the target in its input set is given by
the sum of a geometric series:

Phit
i =

σMAX
i∑
j=0

ρi j

j−1∏
k=0

(1− ρik). (6)

Taking advantage of our independence assumptions,
the probability of reaching the top layer from the bot-
tom layer is always

Phit
0,m−1 =

m−1∏
i=0

Phit
i . (7)

The number of times the bottom layer must be visited
to reach the top layer is geometrically distributed, with
initial probability Phit

0,m−1. The expected value of this
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distribution is simply 1/Phit
0,m−1, soE[κall] is 1/Phit

0,m−1−
1.

The complex interaction of several parameters (se-
lector heuristic effectiveness, number of distractors,
layer execution times, and iteration indices) makes
these expressions difficult to grasp, and in any case,
most of the probabilities are unknown a priori. In the
next section, we offer a concrete example.

5.2.3. Simulation. Using the assumptions made in
Section 5.2.2 and approximate probability models
based on our face tracking implementation (presented
in Section 6), we analyze expected recovery times.

The face tracker can be compactly represented as
four alternating selector and tracker layers. Empiri-
cal data show that the bottom two layers take approxi-
mately 0.13 s to find and determine whether a blob of
color is of sufficient size to be a face; the top two layers
take mean time 0.07 s to confirm or reject a candidate
state set.

Under good visual conditions, the hit rate and the
rate of false positives at the bottom layers are deter-
mined entirely by the number of distractors present in
the image. Lettingd be the number of flesh-colored
distractors in the image, we approximatepf0, the rate of
false positives, withd/(d + 1). So, for example, with
9 distractors,pf0 = 0.9. We eliminate the possibility

Figure 4. Recovery time as a function of the bottom-layer iteration threshold: with one distractor (solid), and two distractors (dotted).

of false positives at the top layer and setpf1 = 0.0.
The top layer iteration threshold is set to 1 (for reasons
to follow), so that fixesE[κ ′1] for the top selector to 1,
as well.

This particular set of values induces the following
terms for Eq. (5):

E[M0] = 0.13+ d

d + 1
0.07

E
[
H1

0

] = 0.2

E[κall] = 1

1/(d + 1)
− 1= d.

Thus,

E[Tface] = 0.13d + 0.07
d2

d + 1
+ 0.2.

E[Tface] versusd becomes asymptotically linear asd
grows larger, as seen in Fig. 10 (the dashed line).

Figure 4 shows the effect of the top layer’s iteration
threshold on expected recovery time. The graph shows
two different cases. The solid line indicates the case
when there is one distractor and the dotted line indicates
the case for two distractors. For these particular cases,
clearly a smaller iteration threshold is better (and thus,
for all of the experiments on real data, we used iteration
indices of 1, except for the bottom layer).
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We caution that analysis with different parameters
show that the trends noted here do not necessarily hold
in general. Some systems with 3 layers, for example,
display best performance at iteration thresholds of 2 or
3. We have found that small iteration thresholds appear
optimal in most cases. Exceptions occur when low lay-
ers take significantly longer to execute than higher lay-
ers. These cases, however, represent those instances
where the low layers are computationally slow com-
pared with the verification and pose-estimation layers
above. In such instances, the use of the lower layers
is usually unjustified, as they fail as efficient focus of
attention heuristics.

6. Implementation and Results

In this section, we demonstrate several implemented
IFA systems which robustly track various objects.

6.1. IFA Face Tracking

Our current real-time implementation runs on a single-
processor 266 MHz Pentium II PC with a Matrox Me-
teor framegrabber.

The system uses seven layers (see Fig. 5 for four of
the layers in action). In the following, all variables,k,
indicate a constant threshold set empirically.

Layer 0 randomly selects one of nine regions of
the search space, roughly corresponding to those states
which would project a face to one of nine rectangles in
the image.

Layer 1 selects regions of the search space corre-
sponding to pixels exhibiting skin color. Skin color is
defined to be those RGB values where

k−rg < r/g < k+rg

k−rb < r/b < k+rb.

Figure 5. Face tracking at different layers. Layer 1: skin-colored pixels are marked black. Layer 3: skin-color blob tracking. Layer 5: a
rectangle marks SSD tracking using a stored template. Layer 6: Full pose estimation; facial features are tracked using small templates.

This color model describes a thin pyramidal wedge in
RGB space which accepts skin colors of all races un-
der approximately white light. Although probabilistic
or adaptive color models are conceivable (Oliver et al.,
1997; Raja et al., 1998), this layer is meant as an ini-
tial attention-focusing scheme only; a fast, liberal color
model is preferred to a slower, more precise one which
might miss actual skin under varying illumination. Any
pixel not classified as skin-color immediately elimi-
nates a range of configurations from the search space:
facial configurations that would project skin-color to
image pixels not classified as skin-color are thrown out.

Layer 2 is a color- and motion-based selector that is
biased toward regions nearest the last observed position
of the target. The search spirals outward and selects
state sets consistent with those pixels which exhibit
both skin color (as in Layer 1) and large motion,

d I (x)
dt

> km.

I (x) represents the image intensity at pixelx. Search
space reduction proceeds in a manner similar to
Layer 1.

Layer 3 usesradial spanningto find the approximate
size and shape of a single cluster of skin-colored pixels.
Radial spanning is a fast cluster detection algorithm:
Pixel probes are initialized at the center of the predicted
position of the face and then extended radially outward
until they find non-skin-colored pixels (Toyama, 1998).
Probes are affected by forces as follows:

Fi = Fout
i + F in

i + F int
i , where

Fout
i = kout, if pixel at xi is skin color,

F in
i = kin, if pixel at xi is not skin color,

F int
i = kint ∗ (2xi − xp(i ) − xs(i )) · vi

|2xi − xp(i ) − xs(i )|
wherei indexes a predetermined number of probes (16
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are used for face tracking),xi is probei ’s pixel location,
vi is probei ’s expansion direction, andp ands return
the predecessor and successor indices ofi . The algo-
rithm is similar todraping(Turk, 1996), but without the
static background restriction, and to balloons (Cohen,
1991), but with greater efficiency and resistance against
spurious edges. The size and centroid of the resulting
blob gives an approximate estimate of the center of the
face in 3D. Thus, the search space is reduced consid-
erably.

Layer 4 is the same as Layer 3, with an additional
computation of the principal axis of the cluster; ap-
proximate position and in-plane orientation are tracked.
This is the first step in which configurations corre-
sponding to a range of orientations are eliminated from
the search space.

Layer 5 performs linearized sum-of-squared-dif-
ferences (SSD) tracking (Hager and Belhumeur, 1998),
which iteratively matches live images to a stored tem-
plate acquired during a manual initialization step:

Xt+1 = Xt − (JTJ)−1JT (I(Xt , t + 1)− I(0, t0)),

whereX is a vector [x y θ ]T , I(X, t) is a vector rep-
resenting the image at timet translated and rotated ac-
cording toX, J is the is the Jacobian ofI with respect
toX, andI(0, t0) is the original template. Fine position
and in-plane orientation are tracked. This layer works
only for approximately frontal poses. In those poses, by
accepting only those matches which have a low SSD
residual value, it ensures that the remaining configu-
rations correspond to a particular individual, and not
just any skin-colored object—face or otherwise. In
addition, both in-plane position and rotation are more
precisely localized, further thinning the search space.

Layer 6 tracks 5 point features of the face including
the eyes, the nostrils, and the mouth. Features are ini-
tialized based on their expected relative locations with
respect to the Layer 5 template. The eyes, nostrils,
and upper lip are tracked by small templates (7× 7 at
1/2 resolution), which are matched by sum of square
differences. These features are then used to determine
the 3D transformation from a face reference frame to
the camera reference frame by finding a least-squares fit
between an approximate geometric model of facial fea-
tures and the tracked features under weak perspective:

T = (PTP)−1PTQ,

whereT is the recovered transformation matrix,P is
a 3× 5 matrix of the concatenated image feature posi-
tions with the optical axis coordinate held constant, and

Q is the 4× 5 concatenation of the five model points
in homogeneous coordinates. The assumption that the
face is oriented toward the camera allows full recovery
of 6-DOF pose. At this point, the configuration space
is shrunk to a small set of configurations corresponding
to faces which appear very similar to the target face and
which are in poses within a margin of error of ground
truth.

6.1.1. Experiments. We have tested the system ex-
tensively under various types of visual perturbations.
Four sets of experiments were performed for each type
of perturbation event: (TT) a temporary event during
track mode, (TS) a temporary event duringsearch
mode, (PT) a permanent event intrack mode, and
(PS) a permanent event insearch mode. All experi-
ments fortrack mode were performed with the track-
ing system initially at the top layer. All experiments
for search mode were begun at the bottommost layer.
Fig. 6 shows the results of the experiments.

Briefly, the results can be summarized as follows:
With a temporary perturbation, the system, if it is
affected at all, recovers to full-precision tracking of
the target no matter what type of disturbance occurs
and regardless of the layer then executing. Recovery
never occurs for permanent perturbations where the
disturbance prevents target confirmation in any track-
ing layer. Overall, the system is highly robust to
any type of temporary disturbance. The same conclu-
sions were informally drawn from repeated demonstra-
tions to skeptical, well-informed audiences (Hager and
Toyama, 1996).

6.1.2. False Positives. The worst error a tracking sys-
tem can make is to track the wrong object, believing it
to be the correct target. As mentioned in Section 5.1.2
such false positives should only occur in an IFA frame-
work when there are distractors for the top layer or
when sleight of hand occurs.

The case of top-layer distractors is all but ruled out in
face tracking by the exacting nature of the SSD tracking
algorithm which expects a strict match with the stored
template. Over the course of hundreds of experiments,
the face tracking system has never locked on to a face
other than the one on which it was initialized.

Sleight of hand is a rare, but real problem. An ex-
ample of this is when the system is tracking the face
based solely on color (Layer 3,track mode), and an-
other flesh-toned object passes in front of the face. It
is possible in this instance that the system will begin
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Figure 6. The effect of various visual disturbances on face tracking performance. Numbers after “drop” entries indicate the number of layers
descended. Some disturbances affect the system differently based on the extent of the disturbance. In these cases, the effect varies from no
effect at all to mistraking.

tracking the second object instead of the face, without
recognizing its error. This situation can be contrived,
and the system does in fact mistrack, recovering only if
the second object itself undergoes a significant visual
disturbance.

In practice, this scenario has never occurred even
during hour-long demonstrations, primarily because it
is rare for anything flesh-toned and larger than the target
face to occlude the target completely, and then remain
in the image. Occlusions with smaller flesh-toned ob-
jects, such as the subject’s hands, are not distracting
enough to the color tracking algorithm to pull tracking
away, and other occlusions simply cause complete mis-
tracking (during which time the system acknowledges
its temporary inability to track).

Figure 7. Face tracking layers during execution. Tracking occurs at Layer 6 for the most part. Every five seconds, a visual disturbance occurs.
See text (Section 6.1.3) for details.

6.1.3. Actual Recovery Times.Figure 7 shows where
the tracking systems spends it time during some exam-
ple runs. The horizontal axis represents time and the
vertical axis represents the IFA layer executed by the
system. The graph displays a concatenation of several
time intervals during a sample run of the face tracking
system, rearranged so that disturbances occur every
5 s. The sample run itself began with a fully initialized
system at Layer 6.

At the 10 s mark, a finger was passed quickly in front
of the subject’s eye. At 15 s, the subject briefly turned
his head approximately 15 degrees to the right. In both
instances, top-layer tracking was disturbed, causing the
system to fall to an SSD tracker (Layer 5) momentarily,
but as the occlusion ceased or as the head turned to face
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forward, the system immediately climbed back up to
the top-layer tracker. At 20 s, the subject scratched his
nose, causing tracking to descend to coarse SSD track-
ing, Layer 4. Tracking fell to Layer 3, skin-color blob
tracking, after a sudden jerk of the face at the 25 s mark.
At 30 s, a hand was passed over the entire face. The
system descends all the way to Layer 2, where the algo-
rithm searches for a moving object near the last known
location of the face. Since the occlusion ends quickly,
the second candidate output set of Layer 2 (a selector)
contains the target and tracking recovers quickly. In the
disturbance at 35 s, tracking bounces between Layers
2 and 3 while the face moves rapidly back and forth.
During this time, the frame-to-frame velocity of the
head is great enough that the system does not attempt
to match the face with the SSD template. Finally, at the
40 s mark, the subject exits the field of view, forcing a
full search of the image for skin-colored blobs. None
are found, so the system remains at Layer 1 until the
subject returns 2.4 s later, at which point the face is
found and tracking resumes at full precision.

Recovery when the subject is in view and back-
ground clutter is minimal takes no more than 0.66 s
from Layer 1.

The last experiment (with the subject temporarily
leaving the field of view) was repeated under differ-
ent levels of clutter (Fig. 8). As more clutter is added
to the background, the tracking system must examine
more disjoint subsets of the state space before finding a
subset that contains the actual target, requiring longer
recovery times (Fig. 9).

The data correspond closely with the analysis of
expected recovery times from Section 5.2.2 and Sec-
tion 5.2.3. The expected recovery time should increase
linearly with the number of flesh-toned objects in the

Figure 8. Experimental setup for various levels of clutter. Regions considered flesh-toned are marked. Note that as clutter increases, more
regions are marked, and consequently, the number of candidate states increases.

scene. Repeated experiments (40 trials) confirm these
figures (see Fig. 10). This trend suggests analogies with
pop-out and camouflage effects in biological vision
systems.

6.1.4. Tradeoff Management. Part of the robustness
of an IFA system arises from its ability to dynamically
manage tradeoffs between different tracking needs.
For example, consider the tradeoff between allowable
tracking speed and precision. IFA systems are con-
structed so that more precise algorithms occupy higher
layers. Since no one would choose to use a slow, im-
precise algorithm when a faster, more precise one is
available, a consequence of this organization is that
layers tend to be sorted in order of decreasing speed.
In particular, those layers which have corresponding
track nodes in the state transition graph show an in-
crease in precision together with a decrease in speed.

In Fig. 11, we plot results from a continuous sam-
ple run of the face tracking system over 20 s, during
which time the subject moved from left to right in the
image, being careful not to cause the system to fall be-
low Layer 2. The values plotted are ground truth as
measured by a Polhemus Fastrak device, tracked esti-
mates, layer number (multiplied by 10), and tracking
error as a function of time. Only values relevant to
the horizontal position of the subject are plotted. As
comparisons between the layer number and the track-
ing error show, error in the estimate is inversely related
to the layer being executed, with the least error present
when tracking occurs at Layer 6.

Similar tradeoffs between the extent of other visual
perturbations (extent of occlusion, deviation from ob-
ject description, etc.) and precision are also handled
by IFA in the same manner.
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Figure 9. Layers with different degrees of clutter. At 5 s, low clutter; 10, medium clutter; 15, high clutter. The recovery time (time it takes to
climb from Layer 1 to 6) increases with greater amounts of clutter.

Figure 10. Actual (solid, 40 trials) and computed (dashed) mean recovery times for zero to four distractors.
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Figure 11. Layers exhibit a tradeoff between speed and precision. Ground truth (as measured by a Polhemus tracking device) and tracking
estimates of the horizontal position of a tracked subject are shown at top. The middle dots indicate the layer of operation. At the bottom, the
difference between ground truth and tracking estimates. Note that increases in the error correspond to dips in the layer of execution.

6.2. Other IFA Systems

All of the systems described below were implemented
either on a Sun Sparc 20 equipped with a standard
framegrabber connected to a single-chip color CCD
camera or on a Silicon Graphics Indigo with VINO
color camera.

In the past, we have often used 3.5 inch diskettes
as a convenient target for various experiments with
visual servoing (Toyama et al., 1996). These experi-
ments, while successful in demonstrating hand-eye co-
ordination, were nevertheless extremely sensitive to
disturbances—a consequence of the local nature of
the edge tracking used. To make this system more
robust to visual disturbances, we developed a robust
disk tracker which consists of the following com-
ponents (in order of increasing output accuracy): a
color-, motion-, intensity-, and position-based combi-
nation selector (layer 0), a homogeneous region tracker
(layer 1), an edge-of-polygon tracker (layer 2), and a
feature-based rectangle tracker (layer 3).

The results for disk tracking are qualitatively similar
to the results for face tracking. The major difference in
performance was that more disturbances caused track-
ing to fail completely. The poorer performance can be
explained by the lack of robustness in the high-layer
tracking for rectangles. But, as with face tracking, the
system was able to rapidly recover from all temporary
perturbations.

In another illustration of IFA applied to robotics,
we developed a robust doorknob tracking module for
use with mobile robots (Feiten et al., 1997). This
particular implementation used anintermediate object
(Wixson and Ballard, 1994), where a search for the door
takes place to facilitate finding the doorknob itself (see
Fig. 12). Restriction of attention to doors helps both to
speed up the search as well as to constrain the search
in an environment full of edge-rich objects.

Finally, we constructed a two-sided object tracker
which tracks an object by matching to multiple views.

The implementation is identical to that for face
tracking, except that the facial feature trackers are
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Figure 12. Layers in doorknob search. Regions marked by white indicate remaining regions of the search space projected onto the image. (1)
position constraint, (2) color search, (3) horizontal edge search, (4) polygon tracking.

Figure 13. Tracking an envelope with two different sides. In the center image, the envelope is tilted too much to match with either stored
image, so tracking has reverted to color tracking.

replaced by SSD-based multi-pattern trackers (Hager
and Toyama, 1998), and the color-based heuristic for
the bottom layer selector seeks to find color matches
based on the union of predominantly occurring colors
in all stored figures.

In Fig. 13, we see how two images were used to track
an envelope. The front and back of the envelope were
initialized as the images to track. In the left and right
figures, tracking proceeded at the top layer, since one
of the envelope’s faces was completely visible. How-
ever, during the time the envelope was being flipped
over, no match was made to either image; thus, tracking
temporarily reverts to a lower layer where color-based
selection takes place.

Performance of two-sided tracking was similar to
that of face tracking, although recovery times were
greater due to the need to compare the image with two
stored templates.

7. Conclusion

The best argument for IFA systems is the subjective
experience of watching them in action. Where pre-
viously, entering the camera field of view was taboo

during experiments which use tracking, now, it is al-
most a pleasure to deliberately cause mistracking, just
to watch the system recover its target. Tracking appli-
cations can be left running even as people walk in front
of the camera, lights are turned off, or target equipment
is moved, because soon after the environment resettles,
tracking will have resumed. In a word, tracking is tena-
cious.

One of the advantages of the IFA framework from
a programmer’s point of view is the relative ease with
which existing trackers can be incorporated into it. The
bottom layers with some variation suit almost all track-
ing applications. Then, given existing trackers, it is
usually easy to decide when they mistrack based on
geometric and visual constraints, especially because
there is room to err on the side of being overly con-
servative. Putting them together is a matter of nesting
tracking loops with entrance and exit conditions that
depend on the layers. Placing the most precise tracker
in the innermost loop fashions the top of the framework
and added robustness is the result.

Further work with IFA proceeds along several aven-
ues. One interesting problem is the automatic construc-
tion of IFA systems, given some a priori knowledge
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about the desired target. It should be possible to design
and initialize an IFA system given statistical models
for what faces look like, how often they appear in an
image, and so on. Another direction for future work
lies in creating dynamic IFA systems which swap layers
in and out depending upon visual conditions. Finally,
we are attempting to further formalize the notions of
“robustness” and “graceful degradation” with the goal
of providing a theoretical framework for evaluating the
robustness of IFA and other real-time systems.
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