
M.J. Egenhofer, C. Freksa, and H.J. Miller (Eds.): GIScience 2004, LNCS 3234, pp. 106–124, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Project Lachesis:
Parsing and Modeling Location Histories

Ramaswamy Hariharan1 and Kentaro Toyama2

1 School of Information and Computer Science,
University of California, Irvine,

Irvine, CA 92697, USA
rharihar@ics.uci.edu

2 Microsoft Research, One Microsoft Way,
Redmond, WA 98052, USA
kentoy@microsoft.com

Abstract. A datatype with increasing importance in GIS is what we call the lo-
cation history–a record of an entity’s location in geographical space over an in-
terval of time. This paper proposes a number of rigorously defined data struc-
tures and algorithms for analyzing and generating location histories. Stays are
instances where a subject has spent some time at a single location, and destina-
tions are clusters of stays. Using stays and destinations, we then propose two
methods for modeling location histories probabilistically. Experiments show the
value of these data structures, as well as the possible applications of probabilis-
tic models of location histories.

1 Introduction

A datatype with increasing importance in GIS is what we call the location history–a
record of an entity’s location in geographical space over an interval of time. In the
past, location histories have been reconstructed by archaeologists and historians look-
ing at migrating populations or census takers tracking demographics, at temporal
resolutions of decades or centuries and spatial resolutions of tens or hundreds of
kilometers. Recent advances in location-aware technology, however, allow us to re-
cord location histories at a dramatically increased resolution. Through technologies
such as GPS, radio triangulation, and localization through mobile phones, 802.11
wireless systems, and RFID tags, it becomes feasible to track individual objects at
resolutions of meters in space and seconds in time–in some cases, even greater resolu-
tion is possible.

Although this increase in resolution is merely quantitative, the sheer volume and
granularity of data opens up possibilities for intricate analysis and data mining of a
qualitatively different nature. In this paper, we propose generic data structures and
algorithms for extracting interesting information in high-resolution location histories,
develop probabilistic models for location histories, and some present applications of
these analytical tools.

In the geographic sciences, Hägerstrand is credited with introducing the first rigor-
ous tools for the analysis of human migratory patterns. His space-time prism provided
a useful visualization of movement, both of groups and individuals [3]. The space-

Project Lachesis: Parsing and Modeling Location Histories 107

time prism plotted time on the independent axis, and an interval, rather than a point,
on the dependent axis to indicate the extent or uncertainty in location of a population.
He used data from government censuses and manually collected logs to study migra-
tion. Geographers have built on this work considerably since its introduction, but have
so far restricted attention to coarse location histories [12].

More recently, a body of work has focused on modeling location histories using
“bead and necklace” representations, which capture the uncertainty of an object’s
location given point samples; the beads fatten as they move away from known sam-
ples at a rate proportional to bounds on object speed [4, 6, 9]. One version of this
representation allows a scaled inspection of the data dependent on choice of data
granularity [6]. This work has also been applied to track health-related information
over many individuals [9].

Another application of location histories is in optimization of mobile phone net-
works, some of which allow consumers to keep track of “buddies.” Mobile phones
operate by switching their connectivity from tower to tower as the phone moves be-
tween cells. By predicting the movement of mobile devices, the number of location
updates with each phone in service can be minimized [2, 7, 11]. Work in this area is
often targeted to the task of optimizing mobile-phone operations, but at core, there are
similar data structures and algorithms for handling location histories. Most often,
geography is represented as a partition into cells, and movement is modeled as transi-
tion probabilities between cells [2, 7]. Others propose a more continuous approach
where traditional filtering and smoothing techniques are used to estimate future state
[11].

Consumer-oriented applications use similar predictive algorithms to help form per-
sonal to-do lists [10] or to give trusted friends and co-workers a better sense of one’s
current location [8]. A number of single-user and multiple-user applications that are
made possible by using location-aware wearable computers [1]. If a wearable com-
puter includes a GPS, clusters of logged GPS coordinates can be used to determine
destinations of interest, and transitions between clusters can provide training data for
developing a probabilistic model of personal movement [1].

There has also been some work in efficient updating of location histories in data-
bases [14, 15]. Since moving objects continuously change positions, algorithms for
avoiding overly frequent updates are desirable. Solutions here propose representations
of movement as function of time and other parameters to predict future movements.
Hence an update to the database is made only when motion parameters change.

Thus, most work to date with location histories has focused on specific applica-
tions or on particular methods for logging location, with the processing of location
histories tailored to the task at hand. In this paper, we attempt to define general data
structures that are independent of both application and method of acquisition. Our
algorithms are likewise independent of the method or resolution at which location
histories are gathered. Applicability, however, is not sacrificed at the expense of gen-
erality, and we illustrate the kind of analysis that can be performed with the proposed
tools.

After defining some notation in the next section, Section 3 discusses parsing of raw
location histories into stays and destinations, which we take as fundamental data
structures in Section 4, for building probabilistic models of location histories. These
sections strive for generality with respect to representation of location and resolution
of data. Finally, in Section 5, we show the kind of analyses that can be accomplished
when our basic data structures and algorithms are applied to data collected by GPS.

108 Ramaswamy Hariharan and Kentaro Toyama

2 Notation

We assume the simplest possible representation of raw location data: data consist of a
time-stamp and a point location. A body of raw data is, therefore, a set, }{ ir=R ,

consisting of pairs,),(iitir l= , each containing a time-stamp and a location. Without

loss of generality, we assume the data is labeled such that Ri ≤≤1 (where R=R)

and sorted in time order: jrir < if jtit < , for any i and j.

We define locations in the most general way. They may be any identifier that iden-
tifies a single, unique, geographic point location–n-tuples of real values are probably
the most typical, but alternate representations, such as a text label, are possible. What
is critical, however, is that the locations exist in a metric space. That is, there must be
a metric function, Distance(il , jl), which computes the distance between two loca-

tions, and which satisfies all of the criteria of a true mathematical metric, namely that
the function is (1) positive definite: Distance(il , jl) ≥ 0 for any il , jl ; (2) Dis-

tance(il , jl) = 0, if and only if il and jl represent the same location; and (3) the

triangle inequality holds: Distance(il , jl) + Distance(jl , kl) ≥ Distance(il , kl).

We point out that the data structures and algorithms proposed below require only that
this metric function exists–they are not dependent on how location per se is repre-
sented. Fig. 1a shows an example of a location history overlaid on a map.

3 Parsing Location Histories

In order to analyze location histories, we parse raw location data to extract symbols
that approximate intuitive semantic notions of location. In particular, we believe the
following four concepts are intuitively meaningful (we will use the word place to
mean a neighborhood around a point location):

• A stay is a single instance of an object spending some time in one place.
• A destination is any place where one or more objects have experienced a stay.
• A trip occurs between two adjacent stays (made by a single object).
• A path is a representation of the description of a set of trips between destinations.

For example, four hours spent at the office today could be a single stay. The office
itself would be a destination. The particular timed trajectory going from home to
office would be a trip. Multiple trips over the same spatial trajectory would form a
path.

Stays and destinations are identified with places, whereas trips and paths are con-
cerned with trajectories between places. Destinations and paths can be thought of as
“timeless” generalizations of their time-dependent counterparts, respectively stays and
trips. This paper focuses on what can be done with stays and destinations. A future
paper will focus on trips and paths, which require their own in-depth treatment.

Project Lachesis: Parsing and Modeling Location Histories 109

(a) (b)

(c) (d)

Fig. 1. Data from a few months of Subject A’s location history, collected using a handheld GPS
device: (a) line segments connecting adjacent points in the location history; (b) extracted stays
marked as dots; (c) destinations marked as circles; and (d) stays and destinations extracted at a
much coarser resolution

In the subsections to follow, we present rigorous definitions of stays and destina-
tions, as well as algorithms for extracting them from a location history. Our approach
considers a data-driven approach using variations of clustering algorithms; destina-
tions are defined independently of a priori information about likely destinations. In
particular, we postpone attempts to correlate stays and destinations with geographic
entities defined by an existing map or GIS, and focus on destinations that appear natu-
rally in the data themselves. We believe this is a more general approach, as it would
be straightforward to associate data-driven destinations post hoc with existing geo-
graphical entities, if necessary.

3.1 Stays

A stay is characterized by “spending some time in one place.” We would like to cap-
ture this concept rigorously while maintaining the breadth required to encompass the

110 Ramaswamy Hariharan and Kentaro Toyama

semantic intuition. In particular, we note that a five-minute visit to the restroom, a
half-day lounge at the beach, and a one-week vacation in Hawaii all represent differ-
ent stays, even though they might all occur within the same two-week time interval.
This sort of nested or overlapping structure happens throughout a given object’s loca-
tion history and what creates it is scale: stays can occur at various geographic and
temporal scales. Stays at some scale might be relevant for some applications, but not
for others. A hierarchical nesting of scales might be useful for yet other applications.

In any case, these examples show that the extraction of stays from a location his-
tory is dependent on two scale parameters, one each for time and spatial scale. We

call these the roaming distance and the stay duration. The roaming distance, roaml∆ ,
represents the maximum distance that an object can stray from a point location to

count as a stay; and a stay duration, durt∆ , is the minimum duration an object must
stay within roaming distance of a point to qualify as staying at that location. These
parameters can be set according to the needs of the application, or the algorithm can
be run multiple times with increasing scale values to create a hierarchy of stays.

A single stay is characterized by a location vector, start time, and end

time:),,(end
i

start
iii tts l= . Our algorithm, which recovers a set of stays, }{ is=S , from

the raw data, is given in Table 1. The functions Medoid(ji,,R) and Diame-

ter(ji,,R) are computed over the set of locations represented in the set of raw data

}:{ R∈kk rr , for jki <≤ . The Diameter function computes the greatest distance
between any two locations in a set, and the Medoid identifies the location in a set that
minimizes the maximum distance to every other point in the set (i.e., it is the data
point nearest to the “center” of the point set). The algorithm essentially identifies
contiguous sequences of raw points, which remain within the roaming distance for at
least as long as the stay duration.

Table 1. Algorithm for extracting stays from raw data

Input: raw location history, }{ ir=R Output: a set of stays, }{ is=S

Initialize: 1←i , ∅←S
while Ri <

 jj min* ← s.t. durij trr ∆+≥ ;

 if (roamljiDiameter ∆>*),,(R)

 1+← ii ;
 else

begin
 jj max* ← s.t. ≤),,(jiDiameter R roaml∆ ;

),*),,,((*ji ttjiMedoid RSS ∪← ;

 1* +← ji ;

 end
end

In the worst case, the algorithm is an O(n2) algorithm for n data points, since me-

doid and diameter computations require distance computations between all pairs in a

Project Lachesis: Parsing and Modeling Location Histories 111

stay cluster. In practice, however, clusters over which these computations must take
place are far smaller than n, and performance is effectively O(n). Many of the prob-
lems of clustering unordered points (e.g., as encountered in [15]) are avoided because
of the temporally ordered nature of the data.

Examples of stays extracted in this manner are shown in Fig. 1. In Fig. 1b, stays
were extracted with a roaming distance of 50 m and stay duration of 10 minutes,
whereas Fig. 1d shows the results for a roaming distance of 20 km and a stay duration
of 24 hours.

3.2 Destinations

A destination is any place where one or more tracked objects have experienced a stay.
Destinations are dependent on geographic scale, but not on temporal scale (i.e., be-
yond the temporal scales used to identify stays). The scale determines how close two
point locations can be and still be considered part of the same destination. As with
stays, the scale of a destination is dependent on the intended usage, and so it is a pa-
rameter that must be set explicitly. For example, a scale representing ~3 m might be
appropriate for extracting destinations corresponding to offices in a building, but a
scale of ~100 m would be necessary for identifying whole buildings as destinations.

Given a set of locations, =L {li}, our aim is to extract all the destinations

}{ jd=D at a particular geographic scale destl∆ . Each destination will be represented

by a location and the scale used:),(dest
jjj ld ∆= l .

Determining destinations from a set of location vectors is a clustering task. There
are many options for clustering points, ranging from k-means clustering to hierarchi-
cal clustering techniques. We choose to use a type of agglomerative clustering, be-
cause it allows us to specify the spatial scale of the clusters, rather than the number of
clusters or the number of points contributing to a cluster, neither of which we know a
priori.

Let a cluster be characterized by a set of point locations: }{lc = . The clusters are
initialized by assigning each input point location to a cluster, and hence there are as
many clusters as location points at the beginning. During each iteration of the algo-
rithm, the two closest clusters are identified. If the cluster resulting from merging the

two clusters would be within the specified scale, destl∆ , they are merged. Otherwise,
the algorithm stops and outputs all remaining clusters as destinations. This is an
O(m 222) algorithm for m stays, because of the need to compute distances between all
pairs of stays.

Table 2 shows pseudocode for this algorithm. The function FindClosestPair finds
the closest two clusters from the cluster set, Radius computes the combined radius of
the two clusters assuming that they are merged, and Merge combines two clusters into
one. The Radius of a set of locations is the distance from the set’s medoid to the loca-
tion within the set, which maximizes the distance.

It will be useful for later sections to define a function d(l), which returns the near-

est destination to location l. This may be further extended to d(l, destl∆), which re-

turns a null value if the location is not within destl∆ of any known destination.

112 Ramaswamy Hariharan and Kentaro Toyama

Finally, destinations can be further computed hierarchically across scales, by al-

lowing the medoids of each cluster created at one scale, dest
jl∆ , to be used as input

locations to compute destinations at a greater scale, dest
jl 1+∆ .

Table 2. Algorithm for computing destinations

Input: a set of point locations, =L {li} Output: a set of destinations, }{ jd=D

Initialize: ii lc ← , for Li ≤≤1 , and }{ ic=C

loop
)(),(CtPairFindClosesji ←cc ;

 if dest
ji lRadius ∆≤),(cc

),(jii Merge ccc ← ;

 jc−← CC ;

 else
 exit
end

foreach C∈ic , create destination)),((dest
ii lMedoidd ∆= c ;

Fig. 1c and Fig. 1d show destinations after clustering stays with this algorithm. The

circles indicate both the location and radius of each destination. The destinations in

Fig. 1c were clustered with a scale setting of 250=∆ destl m, in Fig. 1d,

25=∆ destl km.
Armed with data structures for stays and destinations, we can proceed to construct

probabilistic models of location histories.

4 Modeling Location Histories

The goal of our location-history models is to condense, understand, and predict the
movements of an object over a period of time. We investigate two probabilistic mod-
els for location histories, one with and one without first-order Markovian conditioning
of the current location on subsequent location. Our experiments in Section 5 show
that both have value, depending on the kind of questions that are asked of the model.
The next two subsections define some notation and establish assumptions made by
our model. The subsections after that describe our model, together with algorithms for
training, estimation, and prediction.

4.1 Notation

The destination set, }{ id=D , is the set of all destinations (as determined in Sec-

tion 3.2), where ni ≤≤1 and D=n denotes the total number of destinations.

Project Lachesis: Parsing and Modeling Location Histories 113

We need to distinguish between three different units of time. A time instant, t ,
represents an instantaneous moment in time; if time is thought of as a real-valued
entity of one dimension, a time instant represents a single point on the real number
line. Next, for a given interval unit of time, tδ (e.g., an hour), a time interval, t ,
represents a half-open unit interval on the real number line, aligned to the standard
calendar and clock. For example, for tδ equal to an hour, t might be a time interval
starting at 18:00UTC today and going up to, but not including 19:00UTC. Finally, a
recurring time interval, τ , is the set of all time intervals that represents a regularly
recurring interval of time. Continuing the example, τ might be the set of all times
occurring between 18:00 and 19:00, regardless of date. A set of non-intersecting,
recurring time intervals that covers all times will be denoted }{ kτ=T , for mk ≤≤1 ,

with T=m indicating the number of recurring time intervals required to cover all of

time.
The granularity, tδ , of a recurring time interval and the period with which it recurs

is something that must be decided for a particular model a priori. Thus, we might
decide for a particular model that tδ represents an hour and recurring time intervals
cycle each day (in which case, 24=m) or that each hour of the week should be dif-
ferent recurring intervals (168=m). If so, then kp τ⊂t if pt represents the particu-

lar hour between 18:00 and 19:00 on September 30, 2003, and kτ represents the re-
curring time interval 18:00-19:00.

Finally, we define a function,),(tτ that extracts the recurring time interval that

contains a time instance: kpt ττ =)(, if and only if kpt τ∈ . With minor abuse of nota-

tion, we also let kp ττ =)(t , if and only if kp τ⊂t .

4.2 Model Assumptions

Both of the location-history models presented in this paper are based on the following
assumptions:

• At the beginning of a given time interval, an object is at exactly one destination.
• During any given time interval, an object makes exactly one transition between

destinations. A transition may occur from a destination to itself (a self-transition).

These are not ideal assumptions, by any means. For example, the possibility of
multiple transitions occurring within a time interval is not explicitly modeled by our
current algorithms. We chose these assumptions, however, to strike a compromise
between allowing arbitrary transitions and expressive power of the model–a compro-
mise that would not require unreasonable amounts of data to train.

Based on the above assumptions we define the following probability tables, in a
manner analogous to Hidden Markov Models [13] . The critical difference from the
standard HMM formulation is that we incorporate time-dependence into the model,
where transition probabilities are conditioned on recurring time intervals, rather than
being fixed regardless of the time. This was a deliberate design decision that allows us
to capture cyclical behavior that is, for example, dependent on time-of-day. With this

114 Ramaswamy Hariharan and Kentaro Toyama

modification, we can model the fact that at 8am, it is far more likely that we travel
from home to office than at 4am.

The probability of the object starting time interval kτ at destination id is repre-

sented by a matrix of probabilities,)},({ kidΠ τπ= where

iki ddd == Pr(),(τπ at the start of)kτ (1)

and

),(),(kipi dtd τππ = , for kpt τ∈ . (2)

such that, 1),(
1

=∑
=

n

i
kid τπ .

Next, the probability that the object makes a transition from destination id to jd

during interval kτ is given by a table,)},,({ kji ddaA τ= ,

)Pr(),,(jkji dddda ==τ where at the start of ik dd =+ |1τ at the start of kτ (3)

such that, ∑
=

=
n

i
kji dda

1

1),,(τ . Also,),,(),,(kjipji ddatdda τ= where kpt τ= .

To complete the HMM analogy, we include the observation probability.
)},({ ji ddbB = represents the probability of observing that the object is at destina-

tion jd , given that the object is actually at destination id , with

)Pr(),(i
actual

j
observed

ji ddddddb === (4)

Together as),,(BAΠλ = , these tables represent a probabilistic generative model
of location for the object modeled. Once the parameters are learned, this model can be
used to solve problems such as finding the most likely destination occupied at a par-
ticular time, determining the relative likelihood of a location history sequence, or
stochastically generating a location history sequence.

4.3 Training the Model

We now present algorithms for learning model parameters λ from training data. Our
training data consist of a set of stays, }{ is=S , as extracted from the raw data in Sec-
tion 3. Recall that each stay, s, is a 3-tuple containing a start time, an end time, and a

destination:),,(end
i

start
iii ttds = .

4.3.1 Computing Π
To compute Π , we simply count the number of occurrences in the training data
where the object started a recurring time interval in a particular destination and nor-
malize it over all training data for that recurring interval. Table 3 shows pseudocode.

Project Lachesis: Parsing and Modeling Location Histories 115

Table 3. Algorithm for computing Π, the prior probabilities of being at a destination at a given
recurring time interval

Input: set of stays, }{ is=S Output: probability table,)},({ kidΠ τπ=

Initialize: 0),(←kidcount τ , for ni ≤≤1 and mk ≤≤1

// count
for each S∈is

 if)()(end
i

start
i tt ττ = and ttt start

i
end
i δ<−

continue
 else

for tttCeilingt end
i

start
i δ::)(←

 1))(,())(,()()(+← tdcounttdcount ii ττ ;

end
end
// normalize

for each i, k in ni ≤≤1 and mk ≤≤1

 ∑←
j

kikiki dcountdcountd),(/),(),(τττπ ;

 end

An example of the result of this algorithm is given in Section 5.4.

4.3.2 Computing A
To compute A, we count the number of occurrences in the training data where the
object makes a transition from a particular destination to another destination (or itself)
during a recurring time interval and normalize it over all the training data for that
recurring interval. This algorithm is shown in Table 4.

4.4 Location History Analysis

We now use the location history model, λ, to estimate the relative likelihood of a new

location history,)}({
~

ud t=H , defined over],[finishstartu∈ . We propose two dif-
ferent processes for doing this.

4.4.1 Non-Markovian Solution
We determine the probability of the location history by computing the joint probabil-
ity)),((uud ttπ and))(),((uu ddb tt from time startt to time finisht , and marginaliz-

ing (summing) the joint probabilities over all possible location history sequences.
This can be represented by the following equation:

∑ ∏
∈ =

=
),...{

)),((),()
~

(Pr
finishhstarth

uu
dd

finish

startu
huuh ddbd

H

|H ttπλπ (5)

116 Ramaswamy Hariharan and Kentaro Toyama

Table 4. Algorithm for computing A, the probability table showing the likelihood of transition
between destinations at a given recurring time interval

Input: }{ is=S Output: probability table,)},,({ kji ddaA τ=

Initialize: 0),,(←kji ddcount τ , for nji ≤≤ ,1 and mk ≤≤1

for each S∈is

 // count self-transitions

 if)()(end
i

start
i tt ττ = and ttt start

i
end
i δ<−

 continue
else

for tttCeilingt end
i

start
i δ::)(←

 1))(,,())(,,()()()()(+← tddcounttddcount iiii ττ ;

 end
 end
 // count other transitions

 if Si ≠ and)()(1
start
i

end
i tt +≠ ττ

)(1
start

itcountt += ;

 1))(,,())(,,()()()()(+← tddcounttddcount iiii ττ ;

 end
end
// normalize
for each i, j, k in nji ≤≤ ,1 and mk ≤≤1

∑←
j

kjikji ddcountcountdda),,(/),,(ττ ;

end

If observations are accurate, this reduces to

∏
=

=
finish

startu
uud)),(()

~
(Pr ttπλπ |H (6)

This approach assumes that there is no conditional dependency of state between time
intervals.

4.4.2 Markovian Solution
Another method of determining the probability of location history is by computing the
joint probability of the observation sequence and the state sequence and marginalizing
over all possible location history sequences:

∑ ∏
∈

−

=
+ ++

=
},.....,{

1

1)),(().,,()),(().,()
~

(Pr
11

finishhstarth

uuuss
dd

finish

startu
huuhhhushA ddbddaddbd

H

|H ttttπλ

(7)

Project Lachesis: Parsing and Modeling Location Histories 117

This reduces to

∏
−

=
+=

1

1)),(),(()),(()
~

(Pr
finish

startu
uuussA ddad tttttπλ|H (8)

if observations are accurate. This approach uses the transition probabilities A, and
assumes that the object’s destination at a time interval is conditionally dependent on
the destination at the previous time interval. This is equivalent to the standard “for-
ward algorithm” used to evaluate the probability of a sequence of observations in an
HMM [13], but with the modification for time-dependent transition probabilities.

Whichever method is used, the output is a true probability in the strict sense, but
only given the assumptions of the respective estimates. In reality, probabilities of
events over time intervals are ill-defined–for one thing, the probability of a particular
event approaches zero as the event is sampled over shorter sub-intervals. Thus, these
values are most meaningful when interpreted as relative likelihoods between events
observed using the same interval unit. For example, we can compare the relative like-
lihoods of two location histories of a week’s length with tδ equal to one hour and
judge their relative rarity. We could also set thresholds for a history dependent on the
length of the history, to determine whether an input history appears normal or abnor-
mal. Finally, given multiple models, λι, we can determine which model best explains

a given history by computing)
~

Pr(maxarg i
i

λ|H .

4.5 Stochastic Generation

Using the model parameters, λ, we can stochastically generate a location his-
tory)}({ ugen d t=H for],[finishstartu∈ , where)(ud t is the destination occupied at

time interval ut . We outline two methods for generating location histories.

In the first, we use only the Π parameters, and randomly sample from the set of
destinations for each time interval without conditional dependence between time
intervals. Destinations are chosen such that

∑∝=
j

ijujiu ddbddd),(),())(Pr(tt π (9)

In practice, this can be done by a basic Monte Carlo “coin-tossing” process to gener-
ate an “actual” destination, dj, using π, which is then followed by another coin toss to
determine the observed destination, di, using B. This simplifies to a single coin toss
per time interval in the case where observations of destinations are noiseless.

In the second technique, we utilize the full Markov model and perform a similar
Monte Carlo sampling using the transition probabilities, A, in all but the first time
interval. Thus,

∑∝=
j

ij
start

ji
start ddbddd),(),())(Pr(tt π (10)

as before for starttt = , but

118 Ramaswamy Hariharan and Kentaro Toyama

∑∝== −
j

ij
start

jkkuiu ddbddAdddd),(),,())(|)(Pr(1 ttt (11)

for the remaining time intervals. Again, this is implemented in practice as a simple
series of Monte Carlo coin tosses.

5 Experimental Results

We conducted experiments with the raw location histories of two subjects, who to-
gether collected over two years of data using handheld GPS devices carried on their
person. We have 346 days of data for Subject A, and 386 days for Subject B.

5.1 Stays

We extracted stays from the raw points using the algorithm described in Table 1.
Generating stays at five different temporal scale parameters shows the effect of time

scale on number of stays. Time duration, durt∆ , was set to 10, 20, 40, 80, and 160

minutes. In all cases, the roaming distance was set to 30=∆ roaml m to account for
GPS noise. Fig. 2 summarizes these results.

0

400

800

1200

1600

2000

0 50 100 150 200

Duration in Minutes

N
um

be
r o

f S
ta

ys

Fig. 2. Plots of the number of stays versus the stay duration parameter used to extract stays, for
two subjects

As would be expected, fewer stays are generated if the time threshold for consider-
ing a pause a stay is lengthened. While the two subjects show differences in the abso-
lute number of stays, there is an approximately exponential fall-off in the number as
stay duration is increased. This confirms the intuition that stays might conform to a
power law, where short stays are far more likely than long stays–one is much more
likely to make short trips to the bathroom than to take week-long vacations in Hawaii.

5.2 Destinations

Given stays, we then cluster them into unique destinations, using the algorithm de-
scribed in Table 2. In computing destinations, geographic scale is a key factor. We

Project Lachesis: Parsing and Modeling Location Histories 119

confirm that scale affects extraction of destinations, with destinations generated at
geographic scales of 250, 2,500, and 25,000 m. For both the experiments, stays at

10=∆ durt minutes and 30=∆ roaml m were used. Table 2 summarizes these results.

Fig. 1c shows destinations extracted when 250=∆ scalel m; and Fig. 1d, when

25=∆ scalel km.

Table 5. Destinations generated for subjects A and B at different geographic scales

Subject scalel∆ (meters) # Destinations

250 234
2,500 78

A
 25,000 20

250 179
2,500 72

B
 25,000 26

5.3 Some Simple Analysis

The power of extracting stays and destinations is illustrated in the following exam-
ples, where we compute a variety of statistics about the subject’s lives.

Table 6. Top five destinations by number of stays at each, for two subjects

Subject Destination # Stays at Desti-
nations

Total Time at Destinations
(hours per year)

work, primary 443 3,365
home 388 2,190
gym 70 135
mall 40 39

A

friend’s house 38 131

Subject Destination # Stays at Desti-
nations

Total Time at Destinations
(hours per year)

home 411 3,924
work, primary 180 1,117

work, secondary 76 420
work, other 20 15

B

murphy’s corner 19 27

In Table 6, we show a sample of the kind of information that can be easily ex-

tracted by displaying each of our two subject’s top five most frequently visited desti-
nations. In this case, the destination names were provided by the subjects, who
viewed the destinations on a map, but even this process could be automated by using
a combination of GIS-lookup to map destinations to established place names, and
heuristics to learn person-specific destinations (e.g., time of day and amount of time
spent at a location will give strong indicators of home and work). One application of
this information is for cell-phone location privacy. The location-based services (LBS)
industry, for example, is marketing such services as location-sensitive coupons, if

120 Ramaswamy Hariharan and Kentaro Toyama

users are willing to allow merchants to know their current location. Consumers may
be reluctant to give away this information for privacy reasons, if it discloses sensitive
destinations, such as when exactly they are at home. By automatically determining
where a user’s home is, however, the carrier can offer “location dithering” services
that would either limit or intentionally coarsen estimates of location when the user is
in the neighborhood of a sensitive destination.

We can also analyze subtle patterns of behavior through simple manipulation of the
data. For example, in Fig. 3, we show the average number of hours spent at Subject
A’s primary office location, computed by histogramming stays by day of the week
and dividing them by the number of total days of raw data. There is a clear trend
where the number of hours spent at work peaks on Tuesdays and gradually trails off
toward Friday. Subject A confirms, “I always felt most productive on Tuesdays.”

Fig. 3. Histogram of average number of hours spent by Subject A at his primary workplace

In Fig. 4, we show another easily generated plot of the average number of destina-
tions for Subject A, broken down by month. We can instantly see that Subject A has a
reasonably steady routine that involves little daily travel, but that there is greater vari-
ance in August and December, probably due to vacation activities.

5.4 Experiments with Location History Modeling

We used the low-level processed information, stays and destinations generated from
the raw data of user, to train our location-history models. We chose location histories
recurring at a period of one week, with recurring time interval, tδ , of one hour (m
=168 hours per week), for our models. Fig. 5 shows “typical” and “atypical” weeks
for Subject A, as picked by the subject. The x-axis plots the day of the week, and the
y-axis the index of the destination (an arbitrary number chosen per destination during
the clustering process). Indeed, the vast majority of the weeks in this dataset reveal a
pattern of activity that qualitatively looks like Fig. 5a, where most of the time is spent
either at home or at work.

Project Lachesis: Parsing and Modeling Location Histories 121

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Month of year

Av
er

ag
e

nu
m

be
r o

f d
es

tin
at

io
ns

Fig. 4. Average number of destinations visited by Subject A, by month of year

Fig. 5. (a) Typical and (b) atypical weeks for Subject A. The index of the destination is plotted
against time. (The ordering of the destination indices is entirely arbitrary)

5.5 Evaluation of Location Histories

In this section we present results of the experiments conducted to evaluate the likeli-
hood of a week’s location history. This sort of analysis could distinguish between
typical and atypical patterns of behavior, and might be used, for example, to provide
more sophisticated electronic calendars, which take into account a person’s recent
location history to predict future location and work cycles.

We computed the model parameters),,(BAΠλ = using the algorithms described
in Tables 3 and 4. We did not consider stays that were less than an hour while calcu-
lating the probability table Π .

As a simple verification of the evaluation process, we computed likelihoods of
week-long location histories, given trained models (that did not include the week

122 Ramaswamy Hariharan and Kentaro Toyama

evaluated). The goal is to find an evaluation process that gives us higher likelihoods
for typical weeks and lower likelihoods for atypical weeks. As indicated in Section
4.4, we can use either a Markovian or non-Markovian approach for estimation.

Fig. 6 shows the results of computing the log likelihood of each of 52 weeks in
Subject A’s location history. The circles indicate results using the non-Markovian
evaluation, and crosses, for Markovian evaluation. Although the Markovian evalua-
tion shows lower probabilities overall (due to inclusion of transition probabilities
during evaluation), relative estimates are similar between the two instances of data, as
expected. Unexpected, however, are the results for week 13 (indicated by arrows in
the graph), which was an atypical week according to the subject. Whereas the non-
Markovian process shows this to be a highly atypical week with low likelihood, the
Markovian evaluation, somewhat counterintuitively, shows an unusually high likeli-
hood. Investigation of the underlying data shows that Subject A engaged in an activity
that occurred with almost identical patterns of infrequent movement, exactly once in
the training data, and once during week 13 of the test data. Because the Markovian
evaluation process incorporates transition matrices between destinations, near-match
sequences between training and test data for atypical weeks will come out to be far
more likely than typical weeks, which distribute transition probabilities more dif-
fusely across a greater number of destinations and times.

Although this case could be handled by the Markovian model by training on larger
sets of data, or by clustering Markovian models themselves with the frequency of
their occurrence, our conclusion in this case is that for the purposes of identifying
typical patterns of activity, the non-Markovian model is sufficient. Indeed, a threshold
of -350 on the log likelihood for this data using non-Markovian analysis results in a
perfect identification of atypical weeks, that is in synch with notes by the subject.

Fig. 6. Plots of synthesized weeks, using a model trained on Subject A's data: (a) using the non-
Markovian model and (b) with Markovian transitions

It should be noted, however, that even the Markovian generation does not result in
histories that match the statistics of true data–careful comparison of Fig. 6b and Fig.
5a reveals that in actual data, the subject spends longer amounts of time at destination
157 (home). This is due to a known flaw of standard Markov chains, in that the length
of time spent at a particular destination is necessarily exponential in distribution

Project Lachesis: Parsing and Modeling Location Histories 123

(whereas real data may contain non-exponential distributions). The problem is actu-
ally mitigated in our algorithm, because our transition probabilities are time-
dependent, but the effects of considering only first-order effects are still noticeable.

6 Conclusions

This paper proposed rigorous definitions for location histories, as well as algorithms
for extracting stays and destinations from location histories in a pure, data-driven
manner. Both Markovian and non-Markovian probabilistic models were also devel-
oped for modeling a location history. Experiments show that these techniques are
effective at extracting useful information about detailed location histories, and that
they can be applied to a variety of applications. We find that a non-Markovian ap-
proach is better suited for evaluating likelihoods of a location history, while the
Markovian approach is superior for purposes of stochastically generating a history.

We believe analysis of location histories to be a rich area of research, with many
technical approaches and interesting applications. In future work, we expect to extend
the analysis to trips and paths (what happens between stays and destinations), as well
as to develop more accurate location-history models.

Acknowledgments

We would like to thank the following people for early brainstorming on this project:
Ross Cutler, John Douceur, Nuria Oliver, Eric Ringger, Dan Robbins, Andreas Sou-
pliotis, and Matt Uyttendaele. Thanks also to Chris Meek for discussions on probabil-
istic modeling.

References

1. Ashbrook, D., Starner, T. Learning significant locations and predciting user movement
with GPS. In: Billinghurst, M., eds. 6th International Symposium on Wearable Computers
(ISWC), 2002, pp. 101-108, Seattle, WA, IEEE Computer Society.

2. Bhattacharya, A., Das, S.K. LeZi-update: an information-theoretic approach to track mo-
bile users in PCS networks. In: Imielinski, T., and Steenstrup, M., eds. 5th Annual
ACM/IEEE International Conference on Mobile Computing and Networking, 1999, pp. 1-
12, Seattle, WA.

3. Hägerstrand, T. What about people in regional science? Papers of the Regional Science
Association, 1970, vol. 24, pp. 7-21.

4. Hariharan, R. Modeling Intersections of Geospatial Lifelines. M.S. thesis, Department of
Spatial Information Science and Engineering, University of Maine, 2001.

5. Hershberger, J. Smooth kinetic maintenance of clusters. In Proceedings of the Nineteenth
Annual Symposium on Computational Geometry, 2003, pp. 48-57, San Diego, CA.

6. Hornsby, K., Egenhofer, M.J. Modeling Moving Objects over Multiple Granularities. An-
nals of Mathematics and Artificial Intelligence, 2002, vol. 36 (1-2), pp. 177-194.

7. Lei, Z., Rose, C. Wireless subscriber mobility management using adaptive individual loca-
tion areas for pcs systems. In IEEE International Conference on Communications (ICC),
1998, vol. 3, pp. 1390-1394, Atlanta, GA.

124 Ramaswamy Hariharan and Kentaro Toyama

8. Mantoro, T., Johnson, C. Location history in low-cost context awareness environment. In:
Johnson, C., Montague, P., and Steketee, C., eds. Proceedings of the Australasian Infor-
mation Security Workshop Conference on ACSW Frontiers, 2003, vol. 21, pp. 153-158,
Adelaide, Australia.

9. Mark, D., Egenhofer, M.J., Bian, L., Hornsby, K., Rogerson, P., Vena, J. Spatio-temporal
GIS analysis for environmental health using geospatial lifelines [abstract]. In: Flahault, A.,
Toubiana, L., and Valleron, A., eds. 2nd International Workshop on Geography and Medi-
cine, 1999, GEOMED'99, pp. 52, Paris, France.

10. Marmasse, N., Schmandt, C. Location-aware information delivery with ComMotion. In:
Thomas, P.J., and Gellersen, H., eds. Handheld and Ubiquitous Computing, Second
International Symposium (HUC), 2000, pp. 157-171, Bristol, UK, Springer.

11. Pathirana, P.N., Savkin, A.V., and Jha, S.K. Mobility modeling and trajectory prediction
for cellular networks with mobile base stations. In 4th International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHOC), 2003, pp. 213-221, Annapolis, MD.

12. Pred, A. Space and time in geography: essays dedicated to Torsten Hägerstrand. Lund
Studies in Geography, 1981.

13. Rabiner, L.R. A tutorial on Hidden Markov models and selected applications in speech
recognition. In Proceedings of the IEEE, 1989, vol. 77(2), pp. 257-285.

14. Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., Wang, Y. The MLPQ/GIS constraint
database system. In: Chen, W., Naughton, J.F., Bernstein, P.A., eds. SIGMOD 2000, pp.
601, Dallas, TX.

15. Wolfson, O., Sistla, P.A., Chamberlain, S., and Yesha, Y. Updating and Querying data-
bases that track mobile units. Distributed and Parallel Databases, 1999, vol. 7(3), pp. 257-
287.

	1 Introduction
	2 Notation
	3 Parsing Location Histories
	3.1 Stays
	3.2 Destinations

	4 Modeling Location Histories
	4.1 Notation
	4.2 Model Assumptions
	4.3 Training the Model
	4.4 Location History Analysis
	4.5 Stochastic Generation

	5 Experimental Results
	5.1 Stays
	5.2 Destinations
	5.3 Some Simple Analysis
	5.4 Experiments with Location History Modeling
	5.5 Evaluation of Location Histories

	6 Conclusions
	References

