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Abstract. A datatype with increasing importance in GIS is what we call the lo-
cation history–a record of an entity’s location in geographical space over an in-
terval of time. This paper proposes a number of rigorously defined data struc-
tures and algorithms for analyzing and generating location histories. Stays are 
instances where a subject has spent some time at a single location, and destina-
tions are clusters of stays. Using stays and destinations, we then propose two 
methods for modeling location histories probabilistically. Experiments show the 
value of these data structures, as well as the possible applications of probabilis-
tic models of location histories. 

1   Introduction 

A datatype with increasing importance in GIS is what we call the location history–a 
record of an entity’s location in geographical space over an interval of time. In the 
past, location histories have been reconstructed by archaeologists and historians look-
ing at migrating populations or census takers tracking demographics, at temporal 
resolutions of decades or centuries and spatial resolutions of tens or hundreds of 
kilometers. Recent advances in location-aware technology, however, allow us to re-
cord location histories at a dramatically increased resolution. Through technologies 
such as GPS, radio triangulation, and localization through mobile phones, 802.11 
wireless systems, and RFID tags, it becomes feasible to track individual objects at 
resolutions of meters in space and seconds in time–in some cases, even greater resolu-
tion is possible. 

Although this increase in resolution is merely quantitative, the sheer volume and 
granularity of data opens up possibilities for intricate analysis and data mining of a 
qualitatively different nature. In this paper, we propose generic data structures and 
algorithms for extracting interesting information in high-resolution location histories, 
develop probabilistic models for location histories, and some present applications of 
these analytical tools. 

In the geographic sciences, Hägerstrand is credited with introducing the first rigor-
ous tools for the analysis of human migratory patterns. His space-time prism provided 
a useful visualization of movement, both of groups and individuals [3]. The space-
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time prism plotted time on the independent axis, and an interval, rather than a point, 
on the dependent axis to indicate the extent or uncertainty in location of a population. 
He used data from government censuses and manually collected logs to study migra-
tion. Geographers have built on this work considerably since its introduction, but have 
so far restricted attention to coarse location histories [12]. 

More recently, a body of work has focused on modeling location histories using 
“bead and necklace” representations, which capture the uncertainty of an object’s 
location given point samples; the beads fatten as they move away from known sam-
ples at a rate proportional to bounds on object speed [4, 6, 9]. One version of this 
representation allows a scaled inspection of the data dependent on choice of data 
granularity [6]. This work has also been applied to track health-related information 
over many individuals [9]. 

Another application of location histories is in optimization of mobile phone net-
works, some of which allow consumers to keep track of “buddies.” Mobile phones 
operate by switching their connectivity from tower to tower as the phone moves be-
tween cells. By predicting the movement of mobile devices, the number of location 
updates with each phone in service can be minimized [2, 7, 11]. Work in this area is 
often targeted to the task of optimizing mobile-phone operations, but at core, there are 
similar data structures and algorithms for handling location histories. Most often, 
geography is represented as a partition into cells, and movement is modeled as transi-
tion probabilities between cells [2, 7]. Others propose a more continuous approach 
where traditional filtering and smoothing techniques are used to estimate future state 
[11]. 

Consumer-oriented applications use similar predictive algorithms to help form per-
sonal to-do lists [10] or to give trusted friends and co-workers a better sense of one’s 
current location [8]. A number of single-user and multiple-user applications that are 
made possible by using location-aware wearable computers [1]. If a wearable com-
puter includes a GPS, clusters of logged GPS coordinates can be used to determine 
destinations of interest, and transitions between clusters can provide training data for 
developing a probabilistic model of personal movement [1]. 

There has also been some work in efficient updating of location histories in data-
bases [14, 15]. Since moving objects continuously change positions, algorithms for 
avoiding overly frequent updates are desirable. Solutions here propose representations 
of movement as function of time and other parameters to predict future movements. 
Hence an update to the database is made only when motion parameters change. 

Thus, most work to date with location histories has focused on specific applica-
tions or on particular methods for logging location, with the processing of location 
histories tailored to the task at hand. In this paper, we attempt to define general data 
structures that are independent of both application and method of acquisition. Our 
algorithms are likewise independent of the method or resolution at which location 
histories are gathered. Applicability, however, is not sacrificed at the expense of gen-
erality, and we illustrate the kind of analysis that can be performed with the proposed 
tools. 

After defining some notation in the next section, Section 3 discusses parsing of raw 
location histories into stays and destinations, which we take as fundamental data 
structures in Section 4, for building probabilistic models of location histories. These 
sections strive for generality with respect to representation of location and resolution 
of data. Finally, in Section 5, we show the kind of analyses that can be accomplished 
when our basic data structures and algorithms are applied to data collected by GPS. 
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2   Notation 

We assume the simplest possible representation of raw location data: data consist of a 
time-stamp and a point location. A body of raw data is, therefore, a set, }{ ir=R , 

consisting of pairs, ),( iitir l= , each containing a time-stamp and a location. Without 

loss of generality, we assume the data is labeled such that Ri ≤≤1  (where R=R ) 

and sorted in time order: jrir <  if jtit < , for any i and j. 

We define locations in the most general way. They may be any identifier that iden-
tifies a single, unique, geographic point location–n-tuples of real values are probably 
the most typical, but alternate representations, such as a text label, are possible. What 
is critical, however, is that the locations exist in a metric space. That is, there must be 
a metric function, Distance( il , jl ), which computes the distance between two loca-

tions, and which satisfies all of the criteria of a true mathematical metric, namely that 
the function is (1) positive definite: Distance( il , jl ) ≥ 0 for any il , jl ; (2) Dis-

tance( il , jl ) =  0, if and only if il  and jl  represent the same location; and (3) the 

triangle inequality holds: Distance( il , jl ) + Distance( jl , kl ) ≥  Distance( il , kl ). 

We point out that the data structures and algorithms proposed below require only that 
this metric function exists–they are not dependent on how location per se is repre-
sented. Fig. 1a shows an example of a location history overlaid on a map. 

3   Parsing Location Histories 

In order to analyze location histories, we parse raw location data to extract symbols 
that approximate intuitive semantic notions of location. In particular, we believe the 
following four concepts are intuitively meaningful (we will use the word place to 
mean a neighborhood around a point location): 

• A stay is a single instance of an object spending some time in one place. 
• A destination is any place where one or more objects have experienced a stay. 
• A trip occurs between two adjacent stays (made by a single object). 
• A path is a representation of the description of a set of trips between destinations. 

For example, four hours spent at the office today could be a single stay. The office 
itself would be a destination. The particular timed trajectory going from home to 
office would be a trip. Multiple trips over the same spatial trajectory would form a 
path. 

Stays and destinations are identified with places, whereas trips and paths are con-
cerned with trajectories between places. Destinations and paths can be thought of as 
“timeless” generalizations of their time-dependent counterparts, respectively stays and 
trips. This paper focuses on what can be done with stays and destinations. A future 
paper will focus on trips and paths, which require their own in-depth treatment. 
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(a) (b) 

(c) (d) 

Fig. 1. Data from a few months of Subject A’s location history, collected using a handheld GPS 
device: (a) line segments connecting adjacent points in the location history; (b) extracted stays 
marked as dots; (c) destinations marked as circles; and (d) stays and destinations extracted at a 
much coarser resolution 

In the subsections to follow, we present rigorous definitions of stays and destina-
tions, as well as algorithms for extracting them from a location history. Our approach 
considers a data-driven approach using variations of clustering algorithms; destina-
tions are defined independently of a priori information about likely destinations. In 
particular, we postpone attempts to correlate stays and destinations with geographic 
entities defined by an existing map or GIS, and focus on destinations that appear natu-
rally in the data themselves. We believe this is a more general approach, as it would 
be straightforward to associate data-driven destinations post hoc with existing geo-
graphical entities, if necessary. 

3.1   Stays 

A stay is characterized by “spending some time in one place.” We would like to cap-
ture this concept rigorously while maintaining the breadth required to encompass the 
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semantic intuition. In particular, we note that a five-minute visit to the restroom, a 
half-day lounge at the beach, and a one-week vacation in Hawaii all represent differ-
ent stays, even though they might all occur within the same two-week time interval. 
This sort of nested or overlapping structure happens throughout a given object’s loca-
tion history and what creates it is scale: stays can occur at various geographic and 
temporal scales. Stays at some scale might be relevant for some applications, but not 
for others. A hierarchical nesting of scales might be useful for yet other applications. 

In any case, these examples show that the extraction of stays from a location his-
tory is dependent on two scale parameters, one each for time and spatial scale. We 

call these the roaming distance and the stay duration. The roaming distance, roaml∆ , 
represents the maximum distance that an object can stray from a point location to 

count as a stay; and a stay duration, durt∆ , is the minimum duration an object must 
stay within roaming distance of a point to qualify as staying at that location. These 
parameters can be set according to the needs of the application, or the algorithm can 
be run multiple times with increasing scale values to create a hierarchy of stays.   

A single stay is characterized by a location vector, start time, and end 

time: ),,( end
i

start
iii tts l= . Our algorithm, which recovers a set of stays, }{ is=S , from 

the raw data, is given in Table 1. The functions Medoid( ji,,R ) and Diame-

ter( ji,,R ) are computed over the set of locations represented in the set of raw data 

}:{ R∈kk rr , for jki <≤ . The Diameter function computes the greatest distance 
between any two locations in a set, and the Medoid identifies the location in a set that 
minimizes the maximum distance to every other point in the set (i.e., it is the data 
point nearest to the “center” of the point set). The algorithm essentially identifies 
contiguous sequences of raw points, which remain within the roaming distance for at 
least as long as the stay duration. 

Table 1. Algorithm for extracting stays from raw data 

Input: raw location history, }{ ir=R                        Output:  a set of stays, }{ is=S  

 
Initialize:  1←i , ∅←S  
while Ri <  

 jj min* ←  s.t. durij trr ∆+≥ ; 

 if ( roamljiDiameter ∆>*),,(R )  

  1+← ii ; 
 else  

begin 
  jj max* ←  s.t. ≤),,( jiDiameter R roaml∆ ; 

  ),*),,,(( *ji ttjiMedoid RSS ∪← ; 

  1* +← ji ; 

 end 
end 

 
In the worst case, the algorithm is an O(n2) algorithm for n data points, since me-

doid and diameter computations require distance computations between all pairs in a 
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stay cluster. In practice, however, clusters over which these computations must take 
place are far smaller than n, and performance is effectively O(n). Many of the prob-
lems of clustering unordered points (e.g., as encountered in [15]) are avoided because 
of the temporally ordered nature of the data. 

Examples of stays extracted in this manner are shown in Fig. 1. In Fig. 1b, stays 
were extracted with a roaming distance of 50 m and stay duration of 10 minutes, 
whereas Fig. 1d shows the results for a roaming distance of 20 km and a stay duration 
of 24 hours. 

3.2   Destinations 

A destination is any place where one or more tracked objects have experienced a stay. 
Destinations are dependent on geographic scale, but not on temporal scale (i.e., be-
yond the temporal scales used to identify stays). The scale determines how close two 
point locations can be and still be considered part of the same destination. As with 
stays, the scale of a destination is dependent on the intended usage, and so it is a pa-
rameter that must be set explicitly. For example, a scale representing ~3 m might be 
appropriate for extracting destinations corresponding to offices in a building, but a 
scale of ~100 m would be necessary for identifying whole buildings as destinations. 

Given a set of locations, =L {li}, our aim is to extract all the destinations 

}{ jd=D  at a particular geographic scale destl∆ . Each destination will be represented 

by a location and the scale used: ),( dest
jjj ld ∆= l . 

Determining destinations from a set of location vectors is a clustering task. There 
are many options for clustering points, ranging from k-means clustering to hierarchi-
cal clustering techniques. We choose to use a type of agglomerative clustering, be-
cause it allows us to specify the spatial scale of the clusters, rather than the number of 
clusters or the number of points contributing to a cluster, neither of which we know a 
priori. 

Let a cluster be characterized by a set of point locations:  }{lc = . The clusters are 
initialized by assigning each input point location to a cluster, and hence there are as 
many clusters as location points at the beginning. During each iteration of the algo-
rithm, the two closest clusters are identified. If the cluster resulting from merging the 

two clusters would be within the specified scale, destl∆ , they are merged. Otherwise, 
the algorithm stops and outputs all remaining clusters as destinations. This is an 
O(m 222) algorithm for m stays, because of the need to compute distances between all 
pairs of stays. 

Table 2 shows pseudocode for this algorithm. The function FindClosestPair finds 
the closest two clusters from the cluster set, Radius computes the combined radius of 
the two clusters assuming that they are merged, and Merge combines two clusters into 
one. The Radius of a set of locations is the distance from the set’s medoid to the loca-
tion within the set, which maximizes the distance. 

It will be useful for later sections to define a function d(l), which returns the near-

est destination to location l. This may be further extended to d(l, destl∆ ), which re-

turns a null value if the location is not within destl∆  of any known destination. 
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Finally, destinations can be further computed hierarchically across scales, by al-

lowing the medoids of each cluster created at one scale, dest
jl∆ , to be used as input 

locations to compute destinations at a greater scale, dest
jl 1+∆ . 

Table 2. Algorithm for computing destinations 

Input: a set of point locations, =L {li}     Output:  a set of destinations, }{ jd=D  

Initialize: ii lc ← , for Li ≤≤1 , and }{ ic=C  

loop 
 )(),( CtPairFindClosesji ←cc ; 

 if dest
ji lRadius ∆≤),( cc  

  ),( jii Merge ccc ← ;  

  jc−← CC ; 

 else 
  exit 
end 

foreach C∈ic , create destination )),(( dest
ii lMedoidd ∆= c ; 

 
Fig. 1c and Fig. 1d show destinations after clustering stays with this algorithm. The 

circles indicate both the location and radius of each destination. The destinations in 

Fig. 1c were clustered with a scale setting of 250=∆ destl m, in Fig. 1d, 

25=∆ destl km. 
Armed with data structures for stays and destinations, we can proceed to construct 

probabilistic models of location histories. 

4   Modeling Location Histories 

The goal of our location-history models is to condense, understand, and predict the 
movements of an object over a period of time. We investigate two probabilistic mod-
els for location histories, one with and one without first-order Markovian conditioning 
of the current location on subsequent location. Our experiments in Section 5 show 
that both have value, depending on the kind of questions that are asked of the model. 
The next two subsections define some notation and establish assumptions made by 
our model. The subsections after that describe our model, together with algorithms for 
training, estimation, and prediction. 

4.1   Notation 

The destination set, }{ id=D , is the set of all destinations (as determined in Sec-

tion 3.2), where ni ≤≤1  and D=n  denotes the total number of destinations. 
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We need to distinguish between three different units of time. A time instant, t , 
represents an instantaneous moment in time; if time is thought of as a real-valued 
entity of one dimension, a time instant represents a single point on the real number 
line. Next, for a given interval unit of time, tδ  (e.g., an hour), a time interval, t , 
represents a half-open unit interval on the real number line, aligned to the standard 
calendar and clock. For example, for tδ  equal to an hour, t  might be a time interval 
starting at 18:00UTC today and going up to, but not including 19:00UTC. Finally, a 
recurring time interval, τ , is the set of all time intervals that represents a regularly 
recurring interval of time. Continuing the example, τ might be the set of all times 
occurring between 18:00 and 19:00, regardless of date. A set of non-intersecting, 
recurring time intervals that covers all times will be denoted }{ kτ=T , for mk ≤≤1 , 

with T=m  indicating the number of recurring time intervals required to cover all of 

time. 
The granularity, tδ , of a recurring time interval and the period with which it recurs 

is something that must be decided for a particular model a priori. Thus, we might 
decide for a particular model that tδ  represents an hour and recurring time intervals 
cycle each day (in which case, 24=m ) or that each hour of the week should be dif-
ferent recurring intervals ( 168=m ). If so, then kp τ⊂t  if pt  represents the particu-

lar hour between 18:00 and 19:00 on September 30, 2003, and kτ  represents the re-
curring time interval 18:00-19:00. 

Finally, we define a function, ),(tτ  that extracts the recurring time interval that 

contains a time instance: kpt ττ =)( , if and only if kpt τ∈ . With minor abuse of nota-

tion, we also let kp ττ =)(t , if and only if kp τ⊂t . 

4.2   Model Assumptions 

Both of the location-history models presented in this paper are based on the following 
assumptions: 

• At the beginning of a given time interval, an object is at exactly one destination. 
• During any given time interval, an object makes exactly one transition between 

destinations. A transition may occur from a destination to itself (a self-transition). 

These are not ideal assumptions, by any means. For example, the possibility of 
multiple transitions occurring within a time interval is not explicitly modeled by our 
current algorithms. We chose these assumptions, however, to strike a compromise 
between allowing arbitrary transitions and expressive power of the model–a compro-
mise that would not require unreasonable amounts of data to train. 

Based on the above assumptions we define the following probability tables, in a 
manner analogous to Hidden Markov Models [13] . The critical difference from the 
standard HMM formulation is that we incorporate time-dependence into the model, 
where transition probabilities are conditioned on recurring time intervals, rather than 
being fixed regardless of the time. This was a deliberate design decision that allows us 
to capture cyclical behavior that is, for example, dependent on time-of-day. With this 
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modification, we can model the fact that at 8am, it is far more likely that we travel 
from home to office than at 4am. 

The probability of the object starting time interval kτ  at destination id  is repre-

sented by a matrix of probabilities, )},({ kidΠ τπ=  where 

iki ddd == Pr(),( τπ  at the start of )kτ  (1) 

and 

),(),( kipi dtd τππ = , for kpt τ∈ . (2) 

such that, 1),(
1

=∑
=

n

i
kid τπ . 

Next, the probability that the object makes a transition from destination id  to jd  

during interval kτ  is given by a table, )},,({ kji ddaA τ= , 

)Pr(),,( jkji dddda ==τ  where at the start of ik dd =+ |1τ at the start of kτ  (3) 

such that, ∑
=

=
n

i
kji dda

1

1),,( τ . Also, ),,(),,( kjipji ddatdda τ= where kpt τ= . 

To complete the HMM analogy, we include the observation probability. 
)},({ ji ddbB =  represents the probability of observing that the object is at destina-

tion jd , given that the object is actually at destination id , with 

)Pr(),( i
actual

j
observed

ji ddddddb ===  (4) 

Together as ),,( BAΠλ = , these tables represent a probabilistic generative model 
of location for the object modeled. Once the parameters are learned, this model can be 
used to solve problems such as finding the most likely destination occupied at a par-
ticular time, determining the relative likelihood of a location history sequence, or 
stochastically generating a location history sequence. 

4.3   Training the Model 

We now present algorithms for learning model parameters λ  from training data.  Our 
training data consist of a set of stays, }{ is=S , as extracted from the raw data in Sec-
tion 3. Recall that each stay, s, is a 3-tuple containing a start time, an end time, and a 

destination: ),,( end
i

start
iii ttds = . 

4.3.1   Computing Π  
To compute Π , we simply count the number of occurrences in the training data 
where the object started a recurring time interval in a particular destination and nor-
malize it over all training data for that recurring interval. Table 3 shows pseudocode. 
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Table 3. Algorithm for computing Π, the prior probabilities of being at a destination at a given 
recurring time interval 

Input: set of stays, }{ is=S                       Output: probability table, )},({ kidΠ τπ=  

 
Initialize: 0),( ←kidcount τ , for ni ≤≤1  and mk ≤≤1  

// count 
for each S∈is  

 if )()( end
i

start
i tt ττ =  and ttt start

i
end
i δ<−  

continue 
 else  

for tttCeilingt end
i

start
i δ::)(←   

   1))(,())(,( )()( +← tdcounttdcount ii ττ ; 

end  
end  
// normalize 

for each i, k in ni ≤≤1  and mk ≤≤1  

 ∑←
j

kikiki dcountdcountd ),(/),(),( τττπ ; 

 end 
 

An example of the result of this algorithm is given in Section 5.4. 

4.3.2   Computing A 
To compute A, we count the number of occurrences in the training data where the 
object makes a transition from a particular destination to another destination (or itself) 
during a recurring time interval and normalize it over all the training data for that 
recurring interval. This algorithm is shown in Table 4. 

4.4   Location History Analysis 

We now use the location history model, λ, to estimate the relative likelihood of a new 

location history, )}({
~

ud t=H , defined over ],[ finishstartu∈ . We propose two dif-
ferent processes for doing this. 

4.4.1   Non-Markovian Solution 
We determine the probability of the location history by computing the joint probabil-
ity )),(( uud ttπ  and ))(),(( uu ddb tt  from time startt  to time finisht , and marginaliz-

ing (summing) the joint probabilities over all possible location history sequences. 
This can be represented by the following equation: 

∑ ∏
∈ =

=
),...{

)),((),()
~

(Pr
finishhstarth

uu
dd

finish

startu
huuh ddbd

H

|H ttπλπ  (5) 



116      Ramaswamy Hariharan and Kentaro Toyama 

Table 4. Algorithm for computing A, the probability table showing the likelihood of transition 
between destinations at a given recurring time interval 

Input: }{ is=S                                 Output:  probability table, )},,({ kji ddaA τ=
 

Initialize: 0),,( ←kji ddcount τ , for nji ≤≤ ,1  and mk ≤≤1  

for each S∈is  

 // count self-transitions 

 if )()( end
i

start
i tt ττ =  and ttt start

i
end
i δ<−  

  continue 
else 

for tttCeilingt end
i

start
i δ::)(←  

   1))(,,())(,,( )()()()( +← tddcounttddcount iiii ττ ; 

  end 
 end 
 // count other transitions 

 if Si ≠  and )()( 1
start
i

end
i tt +≠ ττ  

  )( 1
start

itcountt += ;  

  1))(,,())(,,( )()()()( +← tddcounttddcount iiii ττ ; 

 end  
end 
// normalize 
for each i, j, k in nji ≤≤ ,1  and mk ≤≤1   

∑←
j

kjikji ddcountcountdda ),,(/),,( ττ ; 

end 
 
If observations are accurate, this reduces to 

∏
=

=
finish

startu
uud )),(()

~
(Pr ttπλπ |H  (6) 

This approach assumes that there is no conditional dependency of state between time 
intervals. 

4.4.2   Markovian Solution 
Another method of determining the probability of location history is by computing the 
joint probability of the observation sequence and the state sequence and marginalizing 
over all possible location history sequences: 

∑ ∏
∈

−

=
+ ++

=
},.....,{

1

1 )),(().,,()),(().,()
~

(Pr
11

finishhstarth

uuuss
dd

finish

startu
huuhhhushA ddbddaddbd

H

|H ttttπλ   

(7) 
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This reduces to 

∏
−

=
+=

1

1 )),(),(()),(()
~

(Pr
finish

startu
uuussA ddad tttttπλ|H  (8) 

if observations are accurate. This approach uses the transition probabilities A, and 
assumes that the object’s destination at a time interval is conditionally dependent on 
the destination at the previous time interval. This is equivalent to the standard “for-
ward algorithm” used to evaluate the probability of a sequence of observations in an 
HMM [13], but with the modification for time-dependent transition probabilities. 

Whichever method is used, the output is a true probability in the strict sense, but 
only given the assumptions of the respective estimates. In reality, probabilities of 
events over time intervals are ill-defined–for one thing, the probability of a particular 
event approaches zero as the event is sampled over shorter sub-intervals. Thus, these 
values are most meaningful when interpreted as relative likelihoods between events 
observed using the same interval unit. For example, we can compare the relative like-
lihoods of two location histories of a week’s length with tδ  equal to one hour and 
judge their relative rarity. We could also set thresholds for a history dependent on the 
length of the history, to determine whether an input history appears normal or abnor-
mal. Finally, given multiple models, λι, we can determine which model best explains 

a given history by computing )
~

Pr(maxarg i
i

λ|H . 

4.5   Stochastic Generation 

Using the model parameters, λ, we can stochastically generate a location his-
tory )}({ ugen d t=H for ],[ finishstartu∈ , where )( ud t is the destination occupied at 

time interval ut . We outline two methods for generating location histories. 

In the first, we use only the Π parameters, and randomly sample from the set of 
destinations for each time interval without conditional dependence between time 
intervals. Destinations are chosen such that  

∑∝=
j

ijujiu ddbddd ),(),())(Pr( tt π  (9) 

In practice, this can be done by a basic Monte Carlo “coin-tossing” process to gener-
ate an “actual” destination, dj, using π, which is then followed by another coin toss to 
determine the observed destination, di, using B. This simplifies to a single coin toss 
per time interval in the case where observations of destinations are noiseless. 

In the second technique, we utilize the full Markov model and perform a similar 
Monte Carlo sampling using the transition probabilities, A, in all but the first time 
interval. Thus, 

∑∝=
j

ij
start

ji
start ddbddd ),(),())(Pr( tt π  (10) 

as before for starttt = , but  
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∑∝== −
j

ij
start

jkkuiu ddbddAdddd ),(),,())(|)(Pr( 1 ttt  (11) 

for the remaining time intervals. Again, this is implemented in practice as a simple 
series of Monte Carlo coin tosses. 

5   Experimental Results 

We conducted experiments with the raw location histories of two subjects, who to-
gether collected over two years of data using handheld GPS devices carried on their 
person. We have 346 days of data for Subject A, and 386 days for Subject B. 

5.1   Stays  

We extracted stays from the raw points using the algorithm described in Table 1. 
Generating stays at five different temporal scale parameters shows the effect of time 

scale on number of stays. Time duration, durt∆ , was set to 10, 20, 40, 80, and 160 

minutes. In all cases, the roaming distance was set to 30=∆ roaml  m to account for 
GPS noise. Fig. 2 summarizes these results. 
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Fig. 2. Plots of the number of stays versus the stay duration parameter used to extract stays, for 
two subjects 

As would be expected, fewer stays are generated if the time threshold for consider-
ing a pause a stay is lengthened. While the two subjects show differences in the abso-
lute number of stays, there is an approximately exponential fall-off in the number as 
stay duration is increased. This confirms the intuition that stays might conform to a 
power law, where short stays are far more likely than long stays–one is much more 
likely to make short trips to the bathroom than to take week-long vacations in Hawaii. 

5.2   Destinations 

Given stays, we then cluster them into unique destinations, using the algorithm de-
scribed in Table 2. In computing destinations, geographic scale is a key factor. We 
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confirm that scale affects extraction of destinations, with destinations generated at 
geographic scales of 250, 2,500, and 25,000 m. For both the experiments, stays at 

10=∆ durt minutes and 30=∆ roaml m were used. Table 2 summarizes these results. 

Fig. 1c shows destinations extracted when 250=∆ scalel m; and Fig. 1d, when 

25=∆ scalel km. 

Table 5. Destinations generated for subjects A and B at different geographic scales 

Subject scalel∆  (meters) # Destinations 

250 234 
2,500 78 

 
A 
 25,000 20 

250 179 
2,500 72 

 
B 
 25,000 26 

5.3   Some Simple Analysis 

The power of extracting stays and destinations is illustrated in the following exam-
ples, where we compute a variety of statistics about the subject’s lives. 

Table 6. Top five destinations by number of stays at each, for two subjects 

Subject Destination # Stays at Desti-
nations 

Total Time at Destinations 
(hours per year) 

work, primary 443 3,365 
home 388 2,190 
gym 70 135 
mall 40 39 

A 

friend’s house 38 131 
 

Subject Destination # Stays at Desti-
nations 

Total Time at Destinations 
(hours per year) 

home 411 3,924 
work, primary 180 1,117 

work, secondary 76 420 
work, other 20 15 

B 

murphy’s corner 19 27 
 
In Table 6, we show a sample of the kind of information that can be easily ex-

tracted by displaying each of our two subject’s top five most frequently visited desti-
nations. In this case, the destination names were provided by the subjects, who 
viewed the destinations on a map, but even this process could be automated by using 
a combination of GIS-lookup to map destinations to established place names, and 
heuristics to learn person-specific destinations (e.g., time of day and amount of time 
spent at a location will give strong indicators of home and work). One application of 
this information is for cell-phone location privacy. The location-based services (LBS) 
industry, for example, is marketing such services as location-sensitive coupons, if 
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users are willing to allow merchants to know their current location. Consumers may 
be reluctant to give away this information for privacy reasons, if it discloses sensitive 
destinations, such as when exactly they are at home. By automatically determining 
where a user’s home is, however, the carrier can offer “location dithering” services 
that would either limit or intentionally coarsen estimates of location when the user is 
in the neighborhood of a sensitive destination. 

We can also analyze subtle patterns of behavior through simple manipulation of the 
data. For example, in Fig. 3, we show the average number of hours spent at Subject 
A’s primary office location, computed by histogramming stays by day of the week 
and dividing them by the number of total days of raw data. There is a clear trend 
where the number of hours spent at work peaks on Tuesdays and gradually trails off 
toward Friday. Subject A confirms, “I always felt most productive on Tuesdays.” 

 
 

 

Fig. 3. Histogram of average number of hours spent by Subject A at his primary workplace 

In Fig. 4, we show another easily generated plot of the average number of destina-
tions for Subject A, broken down by month. We can instantly see that Subject A has a 
reasonably steady routine that involves little daily travel, but that there is greater vari-
ance in August and December, probably due to vacation activities. 

5.4   Experiments with Location History Modeling 

We used the low-level processed information, stays and destinations generated from 
the raw data of user, to train our location-history models. We chose location histories 
recurring at a period of one week, with recurring time interval, tδ , of one hour (m 
=168 hours per week), for our models. Fig. 5 shows “typical” and “atypical” weeks 
for Subject A, as picked by the subject. The x-axis plots the day of the week, and the 
y-axis the index of the destination (an arbitrary number chosen per destination during 
the clustering process). Indeed, the vast majority of the weeks in this dataset reveal a 
pattern of activity that qualitatively looks like Fig. 5a, where most of the time is spent 
either at home or at work. 
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Fig. 4. Average number of destinations visited by Subject A, by month of year 

 

Fig. 5. (a) Typical and (b) atypical weeks for Subject A. The index of the destination is plotted 
against time. (The ordering of the destination indices is entirely arbitrary) 

5.5   Evaluation of Location Histories 

In this section we present results of the experiments conducted to evaluate the likeli-
hood of a week’s location history. This sort of analysis could distinguish between 
typical and atypical patterns of behavior, and might be used, for example, to provide 
more sophisticated electronic calendars, which take into account a person’s recent 
location history to predict future location and work cycles. 

We computed the model parameters ),,( BAΠλ = using the algorithms described 
in Tables 3 and 4. We did not consider stays that were less than an hour while calcu-
lating the probability table Π . 

As a simple verification of the evaluation process, we computed likelihoods of 
week-long location histories, given trained models (that did not include the week 
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evaluated). The goal is to find an evaluation process that gives us higher likelihoods 
for typical weeks and lower likelihoods for atypical weeks. As indicated in Section 
4.4, we can use either a Markovian or non-Markovian approach for estimation. 

Fig. 6 shows the results of computing the log likelihood of each of 52 weeks in 
Subject A’s location history. The circles indicate results using the non-Markovian 
evaluation, and crosses, for Markovian evaluation. Although the Markovian evalua-
tion shows lower probabilities overall (due to inclusion of transition probabilities 
during evaluation), relative estimates are similar between the two instances of data, as 
expected. Unexpected, however, are the results for week 13 (indicated by arrows in 
the graph), which was an atypical week according to the subject. Whereas the non-
Markovian process shows this to be a highly atypical week with low likelihood, the 
Markovian evaluation, somewhat counterintuitively, shows an unusually high likeli-
hood. Investigation of the underlying data shows that Subject A engaged in an activity 
that occurred with almost identical patterns of infrequent movement, exactly once in 
the training data, and once during week 13 of the test data. Because the Markovian 
evaluation process incorporates transition matrices between destinations, near-match 
sequences between training and test data for atypical weeks will come out to be far 
more likely than typical weeks, which distribute transition probabilities more dif-
fusely across a greater number of destinations and times. 

Although this case could be handled by the Markovian model by training on larger 
sets of data, or by clustering Markovian models themselves with the frequency of 
their occurrence, our conclusion in this case is that for the purposes of identifying 
typical patterns of activity, the non-Markovian model is sufficient. Indeed, a threshold 
of -350 on the log likelihood for this data using non-Markovian analysis results in a 
perfect identification of atypical weeks, that is in synch with notes by the subject. 

 

 

Fig. 6. Plots of synthesized weeks, using a model trained on Subject A's data: (a) using the non-
Markovian model and (b) with Markovian transitions 

It should be noted, however, that even the Markovian generation does not result in 
histories that match the statistics of true data–careful comparison of Fig. 6b and Fig. 
5a reveals that in actual data, the subject spends longer amounts of time at destination 
157 (home). This is due to a known flaw of standard Markov chains, in that the length 
of time spent at a particular destination is necessarily exponential in distribution 
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(whereas real data may contain non-exponential distributions). The problem is actu-
ally mitigated in our algorithm, because our transition probabilities are time-
dependent, but the effects of considering only first-order effects are still noticeable. 

6   Conclusions 

This paper proposed rigorous definitions for location histories, as well as algorithms 
for extracting stays and destinations from location histories in a pure, data-driven 
manner. Both Markovian and non-Markovian probabilistic models were also devel-
oped for modeling a location history. Experiments show that these techniques are 
effective at extracting useful information about detailed location histories, and that 
they can be applied to a variety of applications. We find that a non-Markovian ap-
proach is better suited for evaluating likelihoods of a location history, while the 
Markovian approach is superior for purposes of stochastically generating a history. 

We believe analysis of location histories to be a rich area of research, with many 
technical approaches and interesting applications. In future work, we expect to extend 
the analysis to trips and paths (what happens between stays and destinations), as well 
as to develop more accurate location-history models. 
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